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A simple model is presented for the effective extensional rheology of a dilute suspension of active particles,
such as self-propelled microswimmers, extending previous classical studies on suspensions of passive rodlike
particles. Neglecting particle-particle hydrodynamic interactions, we characterize the configuration of the sus-
pension by an orientation distribution, which satisfies a Fokker-Planck equation including the effects of an
external flow field and of rotary diffusion. Knowledge of this orientation distribution then allows the determi-
nation of the particle extra stress as a configurational average of the force dipoles exerted by the particles on
the fluid, which involve contributions from the imposed flow, rotary diffusion, and the permanent dipoles
resulting from activity. Analytical expressions are obtained for the stress tensor in uniaxial extensional and
compressional flows, as well as in planar extensional flow. In all types of flows, the effective viscosity is found
to increase as a result of activity in suspensions of head-actuated swimmers �pullers� and to decrease in
suspensions of tail-actuated swimmers �pushers�. In the latter case, a negative particle viscosity is found to
occur in weak flows. In planar extensional flow, we also characterize normal stresses, which are enhanced by
activity in suspensions of pullers but reduced in suspensions of pushers. Finally, an energetic interpretation of
the seemingly unphysical decrease in viscosity predicted in suspensions of pushers is proposed, where the
decrease is explained as a consequence of the active power input generated by the swimming particles and is
shown not to be directly related to viscous dissipative processes.
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I. INTRODUCTION

An active suspension denotes a suspension of particles
that are motile and inject mechanical energy into the sus-
pending fluid, usually as a result of self-propulsion. Typical
examples include suspensions of living microorganisms and
swimming cells �e.g., bacteria, algae, and sperm� �1,2�, as
well as suspensions of artificial microswimmers �3–7�. These
systems have been the center of much attention recently, ow-
ing to their relevance in ecology �8,9�, pathology �10�, as
well as various technological applications �11,12�. They are
also interesting from a more fundamental perspective as their
dynamics and properties differ quite uniquely from those of
passive particle suspensions.

The mechanisms by which living microorganisms are able
to swim at small scales are varied �1,13� and include append-
ages such as flagella �2,14,15�, ciliated surfaces �2�, body
deformations �16�, and actin-tail polymerization �17,18�. Ar-
tificial swimmers also use other mechanisms, including
chemical reactions �3–5� and actuation by an external mag-
netic field �6,7�. While these mechanisms can seem very dif-
ferent, they also share universal features. In all cases, the
self-propelled particle exerts a propulsive force on the sur-
rounding fluid, which may be unsteady but has a nonzero
mean in the direction of swimming. Because the overall par-
ticle is force free �if gravity can be neglected�, this propul-
sive force must be balanced exactly by the viscous drag on
the body as it moves through the fluid. To leading order, the
net forcing exerted by the particle on the fluid is therefore a
force dipole, the magnitude of which will be denoted by �0.
While �0 is likely to fluctuate with time for most common

swimming mechanisms, possibly resulting in interesting phe-
nomena �19�, we assume here that it remains constant, which
is a valid approximation if the macroscopic time scales of
interest are much larger than the time scale for microswim-
ming actuation. The sign and magnitude of �0 both depend
on the precise propulsion mechanism: in particular, a tail-
actuated swimmer or pusher, such as most swimming bacte-
ria including Escherichia Coli and Bacillus Subtilis, will re-
sult in �0�0, whereas head-actuated swimmers or pullers,
such as the alga Chlamydomonas Reinhardtii, will result in
�0�0. This representation of a self-propelled particle as an
effective force dipole exerted on the fluid is the basis for
many models of swimming microorganisms �20–30�, as well
as for the present work.

One direct consequence of this effective dipole is the cre-
ation of a disturbance flow in the fluid, which can result in
hydrodynamic interactions in suspensions of many particles.
These interactions have been the subject of many theoretical
�20,24–26,28–30� and computational �21–23,27,31–33�
studies, and have been identified as the origin of the complex
correlated motions, chaotic flows, and pattern formation that
have been reported in experiments on active suspensions
�34–39�. In addition to resulting in hydrodynamic interac-
tions, the force dipoles exerted by the particles are also ex-
pected to modify the effective rheology of their suspensions.
This observation is motivated by the classical Kirkwood
theory �40,41� or by Batchelor’s similar theory for particu-
late suspensions �42,43�, which expresses the effective stress
induced by a distribution of particles as a volume average of
the force dipoles on the particles.

Very few experimental studies have tried to measure the
effective rheology of microswimmer suspensions and yet
strikingly demonstrate the nontrivial effects of activity. In
recent work, Sokolov and Aranson �44� estimated the effec-
tive viscosity of a suspension of swimming Bacillus Subtilis,*dstn@illinois.edu
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which is a pusher, by measuring the viscous torque on a
rotating magnetic particle immersed in a suspension film:
they observed a strong decrease in the effective viscosity, by
up to a factor of 7, and this decrease was found to strongly
correlate with the swimming speed of the bacteria, which is a
measure of activity. Rafaï et al. �45� also recently considered
suspensions of swimming Chlamydomonas Reinhardtii, a
puller alga, and reported a significant increase in viscosity in
suspensions of swimming cells with respect to suspensions
of dead cells at the same volume fraction. Note, however,
that at the high volume fractions considered in their study,
interactions between flagella may have had an effect on the
effective suspension viscosity. While the conclusions of
these two studies appear to be contradictory, we will see
below that they are both valid and differ as a result of the
distinct mechanisms for swimming �pusher vs puller�.

A few theoretical and computational models have also
been developed to predict the effective rheology of active
suspensions. Hatwalne et al. �46� extended previous phe-
nomenological models for the linear viscoelasticity of liquid
crystals to account for active stresses �in the spirit of �20��,
and predicted that activity should result in an effective in-
crease in viscosity in suspensions of puller particles, but in a
decrease in suspensions of pushers. More recently, Ishikawa
and Pedley �47� performed Stokesian dynamics simulations
of spherical swimmers that propel themselves by means of a
prescribed surface slip velocity; however, they found no
change in viscosity in the dilute limit �first correction in vol-
ume fraction� in the case of non-bottom-heavy particles, a
likely consequence of the spherical shape of the particles,
which results in an isotropic orientation distribution. Indeed,
Haines et al. �48� developed a simple two-dimensional
model and demonstrated the importance of the particle ori-
entation distribution on the rheology: by assuming an ad hoc
anisotropic distribution, they were able to predict a decrease
in viscosity for pushers even for isotropic particles. More
recently, they extended their model to three dimensions and
developed a method of determination of the orientation dis-
tribution using asymptotic and numerical solutions of a
Fokker-Planck equation, and obtained qualitatively similar
results for the effective viscosity �49�. However, none of the
aforementioned studies considered normal stresses.

In a recent paper, we developed a simple kinetic model
for the effective rheology of a dilute active suspension in
shear flow �50�. The model, which shares similarities with
�49�, extended classic theories for passive rod suspensions
�51,52,54� and is based on a numerical solution of a conser-
vation equation for the particle orientation distribution,
which is then used to determine the particle extra stress using
Batchelor’s theory �42,43�. By adding an extra term account-
ing for the permanent force dipoles resulting from swim-
ming, the effects of activity were investigated. We confirmed
results from previous studies showing that the effective shear
viscosity should increase in suspensions of pullers but de-
crease in suspensions of pushers, resulting in a negative par-
ticle viscosity in weak flows. We also estimated normal
stresses and found that they are enhanced in suspensions of
pullers, but change sign in suspensions of pushers.

In the present work, we extend the model of �50� to other
common flow types, and specifically to irrotational flows.

This work also directly extends previous classical studies on
suspensions of passive rods �53,54� to account for activity.
One significant simplification compared to the previous
study of �50� on the effective rheology in shear flow is that
the particle orientation distributions in irrotational flows can
be determined exactly �54�, yielding analytical expressions
for the effective viscosity and normal stresses in the suspen-
sions. The basic model for the particle orientation distribu-
tion and effective stress calculation is presented in Sec. II. It
is then applied to uniaxial extensional and compressional
flows in Sec. III, and to planar extensional flow in Sec. IV.
For all flow types, results on the effective viscosity are pre-
sented, showing an increase in suspensions of pullers and a
decrease in suspensions of pushers, in agreement with previ-
ous models and experiments; normal stresses are also ana-
lyzed in planar extensional flow. The origin of the seemingly
unphysical negative particle viscosity that can be observed in
pusher suspensions is further discussed in Sec. V, where an
energy balance explains it as a consequence of the active
power input resulting from activity, which is not a dissipative
process. We conclude in Sec. VI.

II. BASIC THEORY

We consider a suspension of active particles such as self-
propelled microswimmers of characteristic size l placed in an
imposed linear straining flow with velocity field u�x�=x ·E,
where E denotes the rate-of-strain tensor and is a constant
symmetric and traceless second-order tensor. If the suspen-
sion is dilute, particle-particle hydrodynamic interactions can
be neglected, and we may assume that the suspension is spa-
tially homogeneous. In this case, the configuration of the
suspension is entirely determined by an orientation distribu-
tion ��p , t�, where p denotes the particle director, which is a
unit vector defining the particle orientation and swimming
direction. The orientation distribution satisfies a Fokker-
Planck equation �41�,

��

�t
+ �p · �ṗ�� − d�p

2� = 0, �1�

where �p denotes the gradient operator on the surface of the
unit sphere S,

�p � �I − pp� ·
�

�p
, �2�

and where ��p , t� is normalized by

�
S

��p,t�dp = 1. �3�

In the following, we consider the steady-state case where Eq.
�1� reduces to

�p · �ṗ� − d�p�� = 0. �4�

In Eq. �4�, the first term models the effect of the external
flow on the orientational dynamics of the particles and in-
volves the angular velocity ṗ resulting from the flow. It is
modeled by Jeffery’s equation �55,56�, which for an irrota-
tional flow simplifies to
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ṗ = ��I − pp� · E · p , �5�

where �� �−1,1� is a dimensionless parameter characteriz-
ing the particle shape, which is positive for prolate particles
such as most biological or artificial microswimmers. Note
also that ��1 for a slender body.

The second term in Eq. �4� captures rotary diffusion of the
particles, with constant diffusivity d. Rotary diffusion may
arise as a result of Brownian fluctuations in suspensions of
colloidal particles, such as some types of artificial mi-
croswimmers. While Brownian motion is typically negligible
in suspensions of microorganisms, diffusion is still expected
to occur in these systems as a result of hydrodynamic fluc-
tuations, even in the dilute limit �31�. Here, we also use it as
a simplified model for bacterial tumbling: while tumbling is
not rigorously a diffusive process and is more accurately
modeled by a Poisson process in orientation space �28,58�,
we demonstrated in a previous study �50� that its effects on
the steady-state orientation distribution in the absence of in-
teractions are qualitatively the same as those of rotary diffu-
sion. In this work, we consider the case of slender particles
of length l and inverse aspect ratio �, for which the rotary
diffusivity can be estimated based on slender-body theory as
�41,57�

d =
3kT ln�2/��

�	l3 . �6�

In this expression kT denotes the thermal energy of the fluid
in the case of a Brownian suspension or may be viewed as an
effective thermal energy if d is used to model hydrodynamic
diffusion or tumbling. Note that in the absence of Brownian
motion, the system is not in thermal equilibrium, so that Eq.
�6� is simply a convenient definition of an effective kT with
no specific claim of thermodynamic relevance.

While Eq. �4� can only be solved numerically or asymp-
totically for an arbitrary linear flow, including a shear flow
�50,59,60�, Brenner and Condiff �53� showed that an analyti-
cal solution can be obtained in the case of irrotational linear
flows such as the ones considered in this study. Indeed, using
the symmetry of the tensor E, Eq. �5� can be rewritten as

ṗ =
�

2
�p�pp:E� . �7�

This allows us to rewrite the steady-state Fokker-Planck
equation �4� in the form

�p · ���p	�

2
pp:E − d ln �
� = 0. �8�

A solution for ��p� is then easily obtained by setting the flux
term to zero, yielding

��p� =
1

K
exp	 �

2d
pp:E
 , �9�

where the normalization constant K is determined from Eq.
�3� as

K = �
S

exp	 �

2d
pp:E
dp . �10�

Once ��p� is known from Eq. �9�, it can be used to evalu-
ate the effective stress tensor in the suspension. Specifically,
the total stress � is decomposed as the sum of the Newtonian
stress and of a particle extra stress,

� = − qI + 2	E + �p, �11�

where q denotes the pressure and 	 is the viscosity of the
suspending fluid. In the dilute regime, the particle extra
stress �p is obtained as a configurational average of the force
dipole S�p� exerted by a particle on the fluid,

�p = n�S�p�
 , �12�

where n is the mean number density of the suspension and
� · 
 denotes the configurational average,

� · 
 = �
S

·��p�dp . �13�

In the case of interest, the dipole S�p� arises from several
contributions, including resistance to stretching under the ex-
ternal flow, Brownian torques, and the permanent dipole due
to self-propulsion �50�. The first two contributions, due to the
external flow and to Brownian torques, were calculated pre-
viously as �51,52�

S f�p� = A�pp:E��pp −
I

3
� , �14�

Sb�p� = 3kT�pp −
I

3
� . �15�

In Eq. �14�, A is a constant depending on the particle shape;
for a slender particle, it can be obtained from slender-body
theory as A=�	l3 /6 ln�2 /�� �52,57�. Note that Eq. �15� for
Sb�p� strictly represents the stress exerted by a particle un-
dergoing random rotations as a result of Brownian motion: it
is therefore unclear that it is also applicable to model the
stress resulting from tumbling of a swimming bacterium, for
instance. In cases where rotary diffusion is used to model
tumbling in Eq. �1�, Sb�p� should therefore be set to zero. We
carry it along in this study, noting that setting it to zero is
simply equivalent to modifying the numerical value of the
swimming stresslet strength �0 introduced below, and there-
fore does not qualitatively change the results of this analysis.

Finally, the force dipole resulting from swimming can be
expressed in the form �24,25,50�

Ss�p� = �0�pp −
I

3
� , �16�

where the dipole or stresslet strength �0 is a constant depend-
ing on the mechanism for swimming and can be interpreted
as a measure of activity. Note that �0 can be either positive
or negative depending on the type of swimmer: for tail-
actuated particles or pushers such as most swimming bacte-
ria �e.g., Escherichia Coli and Bacillus Subtilis�, it can be
shown that �0�0; conversely, �0�0 for head-actuated
swimmers or pullers such as the alga Chlamydomonas Rein-
hardtii. In addition, it can be shown by dimensional analysis
or using more detailed models for microswimmers that �0 is
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related to the swimming speed U0 and size l of the particles
by a relation of the type �0 /	U0l2=
, where 
 is a dimen-
sionless constant of the same sign as �0, e.g., see �25,31�.

Substituting Eqs. �14�–�16� into Eq. �12� yields an expres-
sion for the particle extra stress,

�p =
�	�nl3�
6 ln�2/����pppp
 −

I

3
�pp
�:E

+ �3nkT + n�0���pp
 −
I

3
� . �17�

This can be further simplified by making use of the follow-
ing identity, which can be derived from the steady-state
Fokker-Planck equation �53�,

�pppp
:E = �pp
 · E −
d

�
�3�pp
 − I� , �18�

yielding

�p =
�	�nl3�
6 ln�2/�����pp
 · E −

I

3
�pp
:E�

+ 3d	2 + 2�̃0 −
1

�

��pp
 −

I

3
�� . �19�

To obtain Eq. �19�, we also made use of the following rela-
tion between A and d, valid for a slender particle: 2Ad=kT.
We also defined a dimensionless activity �̃0 as

�̃0 =
�0

3kT
. �20�

In Eq. �19�, nl3 plays the role of an effective volume fraction,
which may be significantly higher than the actual volume
fraction in the case of high-aspect-ratio particles, but is the
appropriate measure of concentration for determining the im-
portance of hydrodynamic interactions in such suspensions
�41,61�; the dilute regime of interest here, in which hydro-
dynamic interactions can be neglected, occurs when nl3�1.
Note that because nl3 is typically large compared to the ac-
tual volume fraction, this restriction is quite strong and the
theory presented here is really only expected to be accurate
at very low volume fractions, at which the effects of the
particles on the rheology may be weak. However, studies on
passive rod suspensions suggest that theoretical results ob-
tained in the dilute limit of nl3�1 are often valid up to nl3

�O�1� and beyond, at least qualitatively, e.g., �62�.
From Eq. �19�, we see that the particle extra stress is

entirely determined from the second moment �pp
 of the
orientation distribution ��p�. In the following sections, we
analyze the cases of uniaxial extensional and compressional
flows and of planar extensional flow, and we show that �pp

and �p can both be obtained analytically.

III. AXISYMMETRIC FLOWS

We first consider the case of uniaxial straining flows, for
which the rate-of-strain tensor has the following form:

E = �̇�− 1
2 0 0

0 − 1
2 0

0 0 1
� , �21�

where �̇ is the strain rate. The sign of �̇ determines the flow
type: �̇�0 corresponds to an extensional flow, whereas �̇
�0 corresponds to a compressional flow. We also define an
effective Péclet number, or dimensionless flow strength, as
Pe= �̇ /d. Pe compares the effects of the external flow and of
rotary diffusion on the orientational dynamics of a particle.
In cases where rotary diffusion is used as a model for hydro-
dynamic fluctuations or for tumbling, it may also depend
indirectly on the suspension concentration or on the correla-
tion time for tumbling, respectively, through the value of the
effective rotary diffusivity d.

Using spherical coordinate angles �
 ,�� with polar axis in
the z direction �with 
� �0,�� and �� �0,2���, the particle
director can be parametrized as

p = �sin 
 cos �,sin 
sin �,cos �� . �22�

In this case, the orientation distribution is axisymmetric,
��p�=��
�, and solution �9� of the steady-state Fokker-
Planck equation �4� simplifies to

��
� =
1

K
exp	3

4
� cos2 

 , �23�

where �=��̇ /d=� Pe, and K is given by

K = 2��
0

�

exp	3

4
� cos2 

sin 
d
 . �24�

An analytical expression for K was obtained by Brenner and
Condiff �53� as

K = �4��−1 exp��2�D��� for � � 0

2�3/2�−1 erf � for � � 0,
� �25�

where �= �3� /4�1/2, D��� is Dawson’s integral �63�, and erf �
is the error function. Figure 1 shows typical orientation dis-
tributions for both extensional and compressional flows, for
various flow strengths �. In extensional flows ���0�, the
particles are found to align along the extensional axis as
expected, with a stronger degree of alignment at high flow
rates �high ��. In compressional flows, however, alignment
does not occur; instead, the particles orient perpendicular to
the compressional axis, with no preferred azimuthal direc-
tion.

Knowing the orientation distribution ��
�, we can deter-
mine its second moment �pp
 as

�pp
 = �
1
2 �1 − M� 0 0

0 1
2 �1 − M� 0

0 0 M
� , �26�

where

M = 2��
0

�

��
�cos2 
 sin 
d
 . �27�

In particular, M can be evaluated as �53�
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M = �
1

2�D���
−

1

2�2 for � � 0

1

2�2 −
exp�− �2�
�1/2� erf �

for � � 0.� �28�

The second moment �pp
 can then be substituted into Eq.
�19� to determine the particle extra stress �p. After manipu-
lation, we find that �p is of the form

�p = 2�nl3�	�pE , �29�

where nl3 is the effective volume fraction. The dimensionless
coefficient �p is the intrinsic viscosity of the suspension,
which is straightforward to obtain as

�p =
�

12 ln�2/���1

2
	M +

1

3

 +

3

Pe
	2 + 2�̃0 −

1

�

	M −

1

3

� ,

�30�

where M is given by Eq. �28�. In particular, Eq. �29� shows
that the suspension behaves like a Newtonian fluid with a
strain-rate-dependent viscosity; normal stresses do not occur.
This conclusion is the same as that found by Brenner �54� for
passive suspensions, and only holds for axisymmetric flows.
Asymptotic expressions for �p can also be obtained in the
weak and strong flow limits by expanding M in the appro-
priate limits, and are given by

�p =
�

12 ln�2/���
2

15
+

�

5
�2 + 2�̃0� + O�Pe� as Pe → 0

2

3
+ 2	2 + 2�̃0 −

4

3�

Pe−1 + O�Pe−2� as Pe → + �

1

6
− 	2 + 2�̃0 −

2

3�

Pe−1 + O�Pe−2� as Pe → − � .

� �31�

The intrinsic viscosity �30� is plotted versus Péclet num-
ber in Fig. 2 for suspensions of passive particles, pushers,
and pullers. In the passive case ��̃0=0�, the viscosity exhibits
strain-rate thinning in compressional flows, and strain-rate
thickening in extensional flows, in agreement with previous
well-established results �54�. The effect of activity is stron-
gest in weak flows �low Péclet numbers�, where it results in
an enhancement of �p in suspensions of pullers ��̃0�0� but
in a decrease in �p in suspensions of pushers ��̃0�0�. In
suspensions of pullers, this results in strain-rate thinning in
strong extensional flows. The effect of activity, however, is
most drastic in suspensions of pushers, where the intrinsic
viscosity is seen to become negative in weak flows when �̃0
is strongly negative; the viscosity therefore remains strain-
rate thickening in extensional flows, but becomes strain-rate
thickening in compressional flows as well. A negative par-

ticle viscosity had already been predicted in other studies
�48–50�, including in shear flow �50�, and has also been re-
ported in experiments �44�: it appears to be a general feature
of strongly active suspensions in weak flows.

This feature is further analyzed in Fig. 3, showing the
range of activities �̃0 and Péclet numbers Pe for which �p
�0. Confirming the results of Fig. 2, we find that negative
intrinsic viscosities occur in weak flows �small values of Pe�
of strongly active suspensions of pushers �large negative val-
ues of �̃0�. Interestingly, we also find that negative viscosi-
ties are more likely to occur in compressional flows than in
extensional flows.

IV. PLANAR FLOWS

We next consider planar extensional flows, for which the
rate-of-strain tensor is of the form
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FIG. 1. �Color online� Steady-state orientation distributions

��p� in uniaxial ��a� and �b�� extensional and ��c� and �d�� com-

pressional flows, for various flow strengths �=��̇ /d=� Pe, ob-

tained from Eq. �23�.
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E = �̇�
1
2 0 0

0 − 1
2 0

0 0 0
� . �32�

Note that changing the sign of �̇ simply reverses the roles of
the x and y axes, so that we can assume that �̇�0 without
loss of generality. In this case, the orientation distribution is
no longer axisymmetric. Using the same spherical coordinate
system as in Sec. III, the steady-state orientation distribution
becomes

��
,�� =
1

K
exp	1

4
� sin2 
 cos 2�
 , �33�

with � still defined as �=��̇ /d=� Pe. The normalization
constant K in this case is given by

K = �
0

2� �
0

�

exp	1

4
� sin2 
 cos 2�
sin 
d
d� , �34�

and was obtained by Brenner and Condiff �53� as

K = 21/2�2I1/4���I−1/4��� , �35�

where �=� /8, and I� denotes the modified Bessel function of
the first kind of order �. Steady-state orientation distributions
in this case are shown in Fig. 4, where alignment along the
extensional axis �x axis� occurs as expected and becomes
stronger as the Péclet number increases.

The determination of the stress in this case is slightly
more cumbersome. First we express the second moment �pp

of the orientation distribution as

�pp
 = ��sin2 
 cos2 �
 0 0

0 �sin2 
 sin2 �
 0

0 0 �cos2 


� ,

�36�

or, equivalently,

�pp
 = �
1
2 �g + h� 0 0

0 1
2 �h − g� 0

0 0 1 − h
� , �37�

where g= �sin2 
 cos 2�
 and h= �sin2 

. Both g and h were
obtained in terms of �=� /8 by Brenner and Condiff as fol-
lows �53�:

g =
I1/4���I−1/4� ��� + I−1/4���I1/4� ���

2I1/4���I−1/4���
, �38�

h =
I1/4���I−1/4��� + I3/4���I−3/4���

2I1/4���I−1/4���
. �39�

Substituting Eq. �37� into Eq. �19� yields the particle extra
stress. In this case, �p is not proportional to the rate-of-strain
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tensor, i.e., normal stresses will arise. We define the dimen-
sionless intrinsic viscosity �p and normal stress function �p
as

�p =
�xx

p − �yy
p

2	�nl3��̇
, �p =

�xx
p + �yy

p − 2�zz
p

2	�nl3��̇
. �40�

These are easily determined from �p as

�p =
�

12 ln�2/���h

2
+

3

Pe
	2 + 2�̃0 −

1

�

g� , �41�

�p =
�

12 ln�2/���g

2
+

3

Pe
	2 + 2�̃0 −

1

�

�3h − 2�� , �42�

and asymptotic expressions in the weak and strong flow lim-
its can also be obtained as

�p =
�

12 ln�2/��

� �
2

15
+

�

5
�2 + 2�̃0� + O�Pe� as Pe → 0

1

2
+3	2+2�̃0 −

4

3�

Pe−1 +O�Pe−2� as Pe → + � ,�

�43�

�p =
�

12 ln�2/��

� ��
2�

105
+

�2

70
�2 + 2�̃0��Pe + O�Pe2� as Pe → 0

1

2
+3	2+2�̃0 −

5

3�

Pe−1 +O�Pe−2� as Pe → + � .�

�44�

Figure 5 shows both �p and �p as functions of the Péclet
number for passive particles, pushers, and pullers. For pas-
sive particles ��̃0=0�, the intrinsic viscosity exhibits weak
strain-rate thickening at low Pe followed by strain-rate thin-
ning at high Pe but is nearly constant over the range of Péclet
numbers considered here; normal stresses, which tend to-
ward zero in the weak flow limit, increase to a finite positive
value in strong flows �54�. In the case of pullers ��̃0�0�,
activity enhances the zero-strain-rate viscosity, resulting in
strain-rate thinning; it also results in an enhancement of the
normal stress function at intermediate flow strengths. The
effects in the case of suspensions of pushers ��̃0�0� are
reversed. The zero-strain-rate viscosity decreases as a result
of activity, causing �p to become negative at low values of
Pe if �̃0 is sufficiently negative, in qualitative agreement with
our observations in Sec. III for axisymmetric flows. Activity
in suspensions of pushers also causes a decrease in the nor-
mal stress function at moderate flow strengths, causing it to
change sign and become negative at low and intermediate
values of Pe in the case of strongly active suspensions.

The negative intrinsic viscosity occurring in suspensions
of pushers is further characterized in Fig. 6�a�, showing the
critical flow strength below which �p�0 as a function of

activity �̃0. As in the case of uniaxial extensional and com-
pressional flows �Fig. 3�, we find that a negative effective
viscosity will occur in weak flows �low values of Pe� of
strongly active pusher suspensions �high values of ��̃0��.
Similarly, Fig. 6�b� shows the critical flow strength at which
�p changes sign in suspensions of pushers: negative normal
stress functions also primarily occur in weak flows.

V. ENERGY DISSIPATION AND ACTIVE POWER INPUT

As we demonstrated in Figs. 2 and 5, and as previously
observed in other theoretical �46,48–50� and experimental
�44� studies, active suspensions of pusher particles can ex-
hibit negative particle viscosities �p in weak flows at strong
levels of activity. While �p only represents the first correc-
tion to the Newtonian viscosity as a result of activity, a nega-
tive value of �p still means a decrease in the overall suspen-
sion viscosity, which seems to suggest an unphysical
reduction in viscous dissipation due to the particle phase. In
reality, this apparent reduction in viscous dissipation is easily
explained by realizing that the contribution to the particle
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stress due to swimming is not dissipative in nature, but arises
due to the activity of the particles, which are constantly in-
jecting mechanical energy into the fluid. To analyze this ef-
fect in more detail, we perform an energy balance in the
spirit of Landau and Lifschitz �64�. We consider the flow of
an active suspension in a finite domain D bounded by fixed
no-slip boundaries, governed by the unsteady Cauchy equa-
tion in which we use the total stress of Eq. �11�,

�
Du

Dt
= � · �− qI + 2	E + �p� . �45�

In Eq. �45�, u is the fluid velocity with rate-of-strain tensor
E= ��u+�uT� /2, and D /Dt denotes the material derivative.
Taking the dot product of Eq. �45� with u and integrating
over the domain D yields after integration by parts and using
the symmetry of E �64�

dEk

dt
= − 2	�

D

E:EdV − �
D

�p:EdV , �46�

where Ek denotes the kinetic energy of the flow,

Ek =
1

2
��

D

�u�2dV . �47�

Note that the energy balance of Eq. �46� only concerns the
mechanical energy associated with the macroscale flow
driven by the swimming particles on length scales much
larger than l �for the expression for the stress tensor to be
valid�: it does not represent a full energy balance for all the
microscale processes involved with particle propulsion,
which would include additional damping contributions and
should also account for the precise source of energy of the
particles �e.g., bacterial metabolism�. With this in mind, the
first term on the right-hand side of Eq. �46� is always nega-
tive and corresponds to the rate of viscous dissipation � in
the Newtonian suspending fluid,

� = 2	�
D

E:EdV � 0. �48�

The second term includes contributions from the various par-
ticle stresses �Eqs. �14�–�16��. It can be decomposed as

�49�

The first two terms � f and �b, arising from � f and �b, are
both dissipative and must be positive: they correspond to the
rates of energy dissipation induced by the inextensibility of
the particles and by Brownian rotations, both of which result
in extra friction and viscous dissipation near the particle sur-
faces. The third term �s, however, has a different interpreta-
tion: P=−�s defines the active power input induced by the
permanent dipoles exerted by the particles as they swim
through the fluid �see �25��. It is not a dissipative term, but
rather accounts for the rate of mechanical energy generated
by the swimming particles: the sign of �s may therefore be
negative depending on the mechanism for swimming.

If we assume that E is given by Eq. �21�, i.e., that the fluid
flow is locally a uniaxial extensional or compressional flow,
the various integrands on the right-hand side of Eq. �49� can
be calculated as

� f = � f:E = �0�1

2
	M +

1

3

 −

3

� Pe
	M −

1

3

� , �50�

�b = �b:E = �0� 6

Pe
	M −

1

3

� , �51�

�s = �s:E = �0�6�̃0

Pe
	M −

1

3

� , �52�

where �0=�	�nl3��̇2 /4 ln�2 /��. Note also that the intrinsic
viscosity of Eq. �30� is related to � f, �b, and �s by

�p =
2

3	�nl3��̇2 �� f + �b + �s� . �53�

Figure 7 shows � f, �b, �s, and their sum as functions of
Péclet number in a uniaxial extensional flow for a suspension
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FIG. 6. �Color online� �a� Critical flow strength �measured by
the Péclet number Pe� below which negative intrinsic viscosities �p

occur, as a function of activity �̃0, in planar extensional flow of a
pusher suspension. �b� Critical flow strength below which a nega-
tive normal stress function �p occurs, as a function of activity �̃0, in
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of pushers with �̃0=−2.5. In particular, � f and �b are found
to be positive for all values of Pe, as expected since they
represent the extra viscous dissipation due to particle inex-
tensibility and Brownian rotations. We find however that
�s�0, corresponding to a positive active power input. The
sum of � f, �b, and �s, which is related to the intrinsic vis-
cosity via Eq. �53�, can therefore be either positive or nega-
tive depending on the relative magnitude of the various
terms: a negative intrinsic viscosity �p is obtained at low
values of Pe when the active power input dominates viscous
dissipation, whereas a positive �p occurs in stronger flows
when viscous dissipation is the dominant contribution to the
sum. In particular, this analysis identifies the active power
input generated by the particles as the origin of the negative
intrinsic viscosities predicted at low Pe, and it clearly shows
that negative values of �p do not violate the requirement of a
positive rate of viscous dissipation as �p includes a contri-
bution which is not of dissipative origin. In fact, the active
power input identified in Eq. �46� via Eq. �49� can sometimes
result in an increase in kinetic energy by driving disturbance
flows even in the absence of any external forcing, as seen in
previous studies on hydrodynamic interactions in active sus-
pensions, e.g., �24,25�.

VI. CONCLUDING REMARKS

We have presented a simple kinetic model for the effec-
tive rheology of an active suspension in irrotational flows,

which extends classic theories for passive particle suspen-
sions �54�. The model is similar to that previously used in
�50� for steady shear flows and is based on the assumption of
diluteness �nl3�1�, by which particle-particle interactions
can be entirely neglected. Under this assumption, the con-
figuration of the suspension is modeled via an orientation
distribution, which satisfies a Fokker-Planck equation and
can be solved for analytically in the case of an imposed
irrotational flow. The particle extra stress is then obtained
using this orientation distribution as a configurational aver-
age of the force dipoles on the particles, which include a
permanent dipole resulting from activity. Analytical expres-
sions were obtained for the intrinsic viscosity in uniaxial
extensional and compressional flows as well as in planar ex-
tensional flow: in all cases, we found that activity results in
an increase in the intrinsic viscosity in suspensions of pull-
ers, but in a decrease in suspensions of pushers, which can
result in a negative intrinsic viscosity in weak flows and
strongly active suspensions. These predictions are consistent
with previous theoretical models �46,48–50� and are also in
agreement with experimental studies, which have demon-
strated a viscosity enhancement in suspensions of pullers
�45� but a reduction in suspensions of pushers �44�. Using a
simple energy balance, we also identified the active power
input generated by swimming particles �a nondissipative pro-
cess� as the origin for the decrease in viscosity predicted in
pusher suspensions.

Of great interest in active suspensions is the role of hy-
drodynamic interactions induced by the permanent swim-
ming dipoles: these indeed result in very complex dynamics,
pattern formation, unsteady chaotic flows, mixing and diffu-
sion, e.g., see �24,25�. These phenomena were completely
neglected in the present theory, which focused on the leading
effect of activity in dilute suspensions. Beyond the dilute
regime, they will have to be taken into account and are likely
to quantitatively modify the results presented herein. In par-
ticular, particle orientation distributions are likely to become
spatially dependent and unsteady, with similar conclusions
for the particle extra stress. Recent kinetic simulations in
shear flow suggest that these phenomena will become impor-
tant in weak flows, but may disappear in stronger flows,
which are found to be stabilizing �65�: the subtle effects of
concentration on the effective rheology can therefore hardly
be anticipated and will require additional work.
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