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We present a new framework for the efficient simulation of the dynamics of active fluids 
in complex two- and three-dimensional microfluidic geometries. Focusing on the case of 
a suspension of microswimmers such as motile bacteria, we adopt a continuum mean-
field model based on partial differential equations for the evolution of the concentration, 
polarization and nematic tensor fields, which are nonlinearly coupled to the Navier-Stokes 
equations for the fluid flow driven by internal active stresses. A level set method combined 
with an adaptive mesh refinement scheme on Quad-/Octree grids is used to capture 
complex domain shapes while refining the solution near boundaries or in the neighborhood 
of sharp gradients. A hybrid finite volumes/finite differences method is implemented in 
which the concentration field is treated using finite volumes to ensure mass conservation, 
while the polarization and nematic alignment fields are treated using a combination of 
finite differences and finite volumes for enhanced accuracy. The governing equations for 
these fields are solved along with the Navier-Stokes equations, which are evolved using 
an unconditionally stable projection solver. We illustrate the versatility and robustness of 
our method by analyzing spontaneous active flows in various two- and three-dimensional 
systems. Our results show excellent agreement with previous models and experiments and 
pave the way for further developments in active microfluidics.

Published by Elsevier Inc.

1. Introduction

The fast-growing field of active matter has excited physicists and engineers alike, providing both a wealth of emergent 
phenomena to be elucidated and the potential for novel technological applications that harness the internal energy produc-
tion unique to these materials. Many active matter systems consist of collections of particles, cells, or macromolecules (e.g., 
autophoretic colloids [40], swimming microorganisms [25], or microtubules/kinesin clusters [53]) suspended in a viscous 
fluid that mediates hydrodynamic interactions resulting from active stresses exerted on the microscale [20,44,45]. A pecu-
liar feature of these systems is their ability to self-organize and exhibit spontaneously flowing states on mesoscopic length 
scales [24,33], which take the form of chaotic turbulent-like motions in bulk systems [60,52] and of steady unidirectional 
flows in confined geometries [64,63,32,61,65]. The transitions toward these states are thought to be caused by hydrodynamic 
instabilities driven internally by active stresses [48,54,4,15,59], and are also closely connected to the unusual rheology of 
these materials [45].

Numerical simulations have played a central role in the investigation of active fluids, allowing one to probe the mi-
croscopic mechanisms underlying experimentally observed dynamics. Direct particle simulations of systems such as mi-
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croswimmer suspensions [21,47,46,12] and active nematic liquid crystals [18] have been useful for the study of dynamics 
on small scales, providing detailed information about the local microstructure. Another approach has been based on con-
tinuum kinetic models [33,50], which coarse-grain interparticle and hydrodynamic interactions into systems of mean-field 
partial differential equations coupling microstructural variables with the underlying fluid motion. In a popular class of mod-
els [48,4,54], a Smoluchowski equation for the distribution function �(x, p, t) of particles with position x and orientation 
p is solved along with the Navier-Stokes equations with a volumetric body force deriving from an active stress tensor. 
The high-dimensionality of the problem and complexity of boundary conditions, however, have restricted simulations to 
simple geometries [49,15]. The model can be further reduced by deriving equations for the orientational moments of the 
distribution function, such as the concentration c(x, t), polarization vector m(x, t) and nematic tensor D(x, t), which have 
simple interpretations and are useful descriptors of the microstructure. These variables satisfy a hierarchy of coupled par-
tial differential equations requiring a closure approximation, such as a near-isotropy closure scheme [4,50,55] or the more 
sophisticated Bingham closure [17]. The resulting set of equations is more easily solved numerically, and recent simulations 
in various simple geometries have provided valuable insight into instabilities and nonlinear dynamics [17,55,6].

Simulations in complex geometries, especially in three dimensions, have been scarce. The difficulty has stemmed in part 
from the multiscale nature of the problem, which requires resolving microstructural boundary layers near surfaces as well 
as complex flow dynamics. In microswimmer suspensions, the tendency of particles to accumulate at boundaries indeed 
results in sharp gradients [14] and also requires numerical schemes with good conservation properties to avoid mass losses. 
Away from boundaries, turbulent-like dynamics result in unsteady velocity and microstructural gradients on a wide range of 
length scales set by the range of unstable modes allowed in a particular geometry. Here, we present a simulation framework 
that overcomes these challenges while enabling efficient simulations in complex two- and three-dimensional geometries. 
We focus on the case of a suspension of microswimmers such as motile bacteria and adopt a continuum model based on 
orientational moments used in our previous work [55]. A level set method combined with an adaptive mesh refinement 
scheme on Quad-/Octrees [36] is used to capture complex domain shapes while refining the solution near boundaries or in 
the vicinity of sharp gradients. A hybrid finite volumes/differences method is implemented in which the concentration field 
is treated using finite volumes to ensure mass conservation while the polarization and nematic tensor fields are treated 
using a combination of finite differences and finite volumes for enhanced accuracy [56]. The evolution equations for these 
fields are coupled to the Navier-Stokes equations for the fluid motion, which are evolved using an unconditionally stable 
projection solver [19]. This novel method was applied to study spontaneous active flows in two dimensional systems in 
our recent work [55], where the results were analyzed in detail and shown to reproduce experimental observations in 
microfluidic systems. The present paper provides a detailed account of the numerical method used in [55] and extends it 
to three spatial dimensions. The method, whose robustness and versatility are illustrated in various examples, provides a 
unique tool for studying active fluid flows in complex geometries and paves the way for new developments in computational 
active microfluidics.

The paper is organized as follows. We present the governing equations for the evolution of the microstructure and fluid 
flow along with their non-dimensionalized versions in section 2. The semi-implicit scheme and functional iterations used for 
time-marching are described in section 3. The level set method and grid generation procedure are explained in sections 4
and 5, followed by a detailed account of the finite volume/difference approximations used for spatial discretizations in 
section 6. We then validate and illustrate our method on various 2D and 3D examples motivated by existing experimental 
observations in section 7, and we conclude in section 8.

2. Governing equations

2.1. Continuum mean-field model

We employ a continuum model for active suspensions first developed by Saintillan & Shelley [48,49] and subsequently 
applied to study active collective motions in bulk [15] as well as confined systems [55]. We consider a suspension of active 
Brownian swimmers with mean number density n confined in a domain � with fixed boundary ∂� and characteristic size 
H . The swimmers self-propel with constant velocity V s along their unit director p and have constant translational and 
rotational diffusivities dt and dr , respectively. As they swim, they exert a net symmetric force dipole on the suspending fluid 
with stresslet strength σ0 [20,45]. The suspending fluid is assumed to be Newtonian and incompressible with density ρ and 
dynamic viscosity μ.

To describe the configuration and dynamics of the suspension we employ a continuum mean-field approach based on 
the probability density function �(x, p, t) of finding a swimmer at position x with orientation p at time t . Following [49], 
the evolution of � is captured by a Smoluchowski equation

∂t� + ∇x · (ẋ�) + ∇p · (ṗ�) = 0 ∀(x,p) ∈ � × C, (1)

where ∇x and ∇p are the spatial and orientational gradient operators, � is the domain occupied by the suspension, and 
C is the space of orientations, which is the unit circle in 2D and the unit sphere in 3D. The translational flux velocity ẋ is 
modeled as

ẋ = V sp + u − dt∇x ln�, (2)
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and accounts for self propulsion of the swimmers, advection by the mean-field background flow u and translational diffu-
sion. The orientational flux velocity ṗ is similarly expressed as

ṗ = (I − pp) · (ζE − W) · p − dr∇p ln�, (3)

and accounts for reorientation of the swimmers by the local rate-of-strain and vorticity tensors E = 1
2 (∇u + ∇uT ) and 

W = 1
2 (∇u − ∇uT ) as well as rotational diffusion. The first term on the right-hand side is the celebrated Jeffery’s equation 

[23], where the dimensionless parameter ζ is known as Bretherton’s constant and characterizes particle shape [5], with 
ζ = 0 for spheres such as self-propelled colloids and ζ ≈ 1 for slender particles such as bacteria. On the confining boundary 
∂�, a no-flux condition is prescribed on the probability density function [14]:

n · ẋ = 0 ∀(x,p) ∈ ∂� × C, (4)

which ensures that the total number of swimmers in the system is conserved.

2.2. Dimensional analysis

Using H as length scale and d−1
r as time scale, non-dimensionalization of the governing equations yields the four di-

mensionless groups

Pes = V s

dr H
, α = σ0n

μdr
, 	 = drdt

V 2
s

, Re = ρH2dr

μ
. (5)

The swimming Péclet number Pes denotes the ratio of the persistence length of swimmer trajectories to the characteristic 
size of the domain and is a measure of confinement. The parameter α compares the effect of active stresses exerted by the 
swimmers on the fluid to the dissipative effects of viscosity and rotational diffusion. It is a signed coefficient that depends 
on the type of swimmer [45]: α < 0 for so-called pushers such as bacteria that exert a thrust with their flagellar tail [8], and 
α > 0 for so-called pullers such as certain micro-algae that exert a thrust with their anterior flagella [9]. Past studies have 
shown that collective motion typically arises in sufficiently dense suspensions of pushers [49,46], which can be rationalized 
theoretically using a stability analysis or based on arguments on the system’s configurational entropy [49,22]. The parameter 
	 is swimmer-specific and compares the strength of propulsion to Brownian diffusion; the limit 	 → 0 describes purely 
ballistic swimmers, while 	 → ∞ corresponds to purely diffusive swimmers. Finally, Re denotes the Reynolds number, 
which is typically small in active suspensions. We henceforth exclusively use dimensionless variables and equations.

2.3. Orientational moments and closure approximation

Solving the Smoluchowski equation directly, while possible in simple geometries [49,14], is computationally challenging 
and expensive due to the high dimensionality of the problem. Instead, it is possible to reduce the dimensionality by using a 
closure approximation that expresses the probability density function � in terms of its orientational moments [50]. In 2D, 
we use the approximation

�(x,p, t) ≈ 1

2π

(
c(x, t) + 2p · m(x, t) + 4pp : D(x, t)

)
, (6)

which can be interpreted as a truncated Fourier series expansion; corresponding expressions in 3D are provided in sec-
tion 2.6. The moments c, m, and D, which no longer depend on p, are defined as integrals over the unit circle C of 
orientations:

c(x, t) =
∫
C

�(x,p, t)dp, (7)

m(x, t) =
∫
C

p�(x,p, t)dp, (8)

D(x, t) =
∫
C

(
pp − I

2

)
�(x,p, t)dp. (9)

The zeroth-order moment c denotes the local particle concentration. The first-order moment m is known as the polarization 
and captures the mean direction of swimming. Finally, the second-order moment D is the nematic alignment tensor, which 
in the current form is symmetric and trace-free and describes local particle alignment irrespective of swimming direction. 
Evolution equations for these three quantities can be obtained by taking orientational moments of the Smoluchovski Eq. (1)
and are given by
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∂tc = −∇ · Fc, (10)

∂tm = −∇ · Fm + Hm − m, (11)

∂tD = −∇ · FD + HD − 4D, (12)

where the translational fluxes are

Fc = u c + Pes m − 	Pe2
s ∇c, (13)

Fm = u m + Pes

(
D + c I

2

)
− 	Pe2

s ∇m, (14)

FD = u D + Pes

(
T − m I

2

)
− 	Pe2

s ∇D, (15)

and the source terms Hm and HD come from Jeffery’s equation and describe particle alignment by the flow:

Hm = 1
2 ζE · m − W · m, (16)

HD = 1
2 ζ cE + 2

3 ζE · D − 1
3ζ(D : E)I + D · W − W · D. (17)

The flux for D in Eq. (15) involves the third-order orientational moment T. Based on the closure approximation implied by 
Eq. (6), it can be related to the polarization as

Tijk = 1
4

(
miδ jk + m jδik + mkδi j

)
. (18)

Taking the first three moments of the boundary condition Eq. (4) yields no-flux conditions for the moments at the domain 
boundary:

n · Fc = n · Fm = n · FD = 0 ∀x ∈ ∂�. (19)

2.4. Fluid motion

We assume that the suspending fluid is Newtonian and that the flow is incompressible, so that the velocity and pressure 
fields satisfy the incompressible Navier-Stokes equations:

Re (∂tu + u · ∇u) = −∇p + ∇ · (∇u + αD) ∀x ∈ �, (20)

∇ · u = 0, (21)

supplemented by the no-slip condition on the boundary

u = 0 ∀x ∈ ∂�. (22)

In Eq. (20), the last term involves the active stress tensor αD, which captures the effect of the force dipoles exerted by the 
swimmers on the fluid as they self-propel [20,45].

2.5. Summary of the governing equations

Using incompressibility, we rewrite the coupled non-linear equations Eqs. (10), (11), (12), (20), and (21) capturing the 
dynamics of the suspension and fluid motion inside the domain � as

∂tc + u · ∇c = 	Pe2
s �c − Pes∇ · m, (23)

∂tm + u · ∇m = 	Pe2
s �m − m − Pes∇ ·

(
D + c I

2

)
+ Hm, (24)

∂tD + u · ∇D = 	Pe2
s �D − 4D − Pes∇ ·

(
T − m I

2

)
+ HD , (25)

Re (∂tu + u · ∇u) = −∇p + �u + α∇ · D, (26)

∇ · u = 0. (27)

Boundary conditions (13), (14), and (15) for the moments, combined with the no-slip condition u = 0 on ∂�, yield the 
Neumann-like boundary conditions

	Pesn · ∇c = n · m, (28)

	Pesn · ∇m = n ·
(

D + c I
2

)
, (29)

	Pesn · ∇D = n ·
(

T − m I
2

)
. (30)
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The above system of coupled non-linear partial differential equations and boundary conditions constitutes a complete system 
governing the coupled evolution of swimmer configurations and suspending fluid flow.

Some of the basic physics of active suspensions can be gleaned from the various couplings dictated by these governing 
equations. The generic instability of pusher suspensions [48], which results in spontaneous chaotic flows in bulk systems, is 
rooted in the active stress tensor αD that forces the Navier-Stokes equations: in suspensions of pushers (α < 0), perturba-
tions in nematic alignment drive flows through the active forcing term, which in turn reinforces the nematic alignment via 
the nonlinear source term HD in equation (26). This feedback loop, which results in the growth of nematic bend fluctua-
tions, has been analyzed in detail in the past using linearized stability theories [48,49,15,4,54]. In suspensions of swimmers, 
nematic alignment combined with self-propulsion also results in polarization via the term Pes∇ · D in equation (25), which 
is ultimately responsible for concentration fluctuations via the term Pes∇ · m in equation (23).

2.6. Governing equations in three dimensions

In three spatial dimensions, the governing equations can be obtained through the same methodology. The equations 
retain the same structure with slightly different coefficients, which result from new expressions for the nematic tensor and 
for the third-moment closure:

D(x, t) =
∫
C

(
pp − I

3

)
�(x,p, t)dp, (31)

Tijk = 1
5

(
miδ jk + m jδik + mkδi j

)
. (32)

Governing equations for the concentration field and fluid flow are unaffected by these new definitions and remain identical 
to Eqs. (23), (26), and (27). The evolution equations for the polarization and nematic tensor become

∂tm + u · ∇m = 	Pe2
s �m − 2m − Pes∇ ·

(
D + c I

3

)
+ Hm, (33)

∂tD + u · ∇D = 	Pe2
s �D − 6D − Pes∇ ·

(
T − m I

3

)
+ HD , (34)

where hydrodynamic coupling terms are now expressed as

Hm = 3
5 ζE · m − W · m, (35)

HD = 2
5 ζ cE + 6

7 ζE · D − 2
7 ζ(D : E)I + D · W − W · D. (36)

3. Time discretization

3.1. Semi-implicit scheme

Our numerical approach is constructed as a variable-time-step semi-implicit method, where advective terms are treated 
using a Semi-Lagrangian Backward Difference (SLBDF) scheme [34,19], while all other terms, including the right-hand sides 
of the boundary conditions (28), (29) and (30), are treated implicitly. Specifically,

βcn+1 + γ cn
d + δcn−1

d = 	Pe2
s �cn+1 − Pes∇ · mn+1, (37)

βmn+1 + γ mn
d + δmn−1

d = 	Pe2
s �mn+1 − mn+1 − Pes∇ ·

(
D + c I

2

)n+1 + Hn+1
m , (38)

βDn+1 + γ Dn
d + δDn−1

d = 	Pe2
s �Dn+1 − 4Dn+1 − Pes∇ ·

(
T − m I

2

)n+1 + Hn+1
D , (39)

Re
(
βun+1 + γ un

d + δun−1
d

)
= −∇pn+1 + �un+1 + α∇ · Dn+1, (40)

∇ · un+1 = 0, (41)

with boundary conditions on ∂� given by

	Pesn · ∇cn+1 = n · mn+1, (42)

	Pesn · ∇mn+1 = n ·
(

D + c I
2

)n+1
, (43)

	Pesn · ∇Dn+1 = n ·
(

T − m I
2

)n+1
, (44)

un+1 = 0. (45)
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The time-step-dependent coefficients β, γ , δ in Eqs. (37)–(40) are given by

β = 2�tn + �tn−1

�tn(�tn + �tn−1)
, δ = �tn

�tn−1(�tn + �tn−1)
, γ = −β − δ. (46)

The variables identified by subscript d are estimated at time steps tn and tn−1 and at the departure points xn
d , xn−1

d from 
which the characteristic curves originate, e.g., cn

d = c(xn
d, t

n), cn−1
d = c(xn−1

d , tn+1). The departure points are determined using 
a second-order modified explicit mid-point scheme:

x∗ = xn+1 − �tn

2
un(xn+1), (47)

u∗ =
(

1 + �tn

2�tn−1

)
un(x∗) − �tn

2�tn−1
un−1(x∗), (48)

xn
d = xn+1 − �tnu∗, (49)

and

x∗ = xn+1 − �tnun(xn+1), (50)

u∗ = un(x∗), (51)

xn−1
d = xn+1 − (�tn + �tn−1)u∗. (52)

The velocities un(x∗) and un−1(x∗) at the mid-points as well as various quantities at the departing points such as cn−1
d and 

cn
d are approximated using third-order-accurate interpolation. This temporal discretization ensures that the overall method is 

unconditionally strongly stable, with an accuracy in time that is determined by the accuracy of the semi-Lagrangian method.

3.2. Functional iterations

We employ an iterative method to address the non-linearity incurred by hydrodynamic interactions in Eqs. (16)–(17). At 
each time step tn , we compute the next solution at time tn+1 iteratively and initialize it with the solution at the previous 
time step:

cn+1
0 = cn, mn+1

0 = mn, Dn+1
0 = Dn, un+1

0 = un, (53)

where subscript k = 0 refers to iteration number. We then correct it iteratively using implicit correctors and the latest 
available solution corrections to calculate nonlinear coupling terms. We start by computing the new concentration field 
cn+1

k+1 as the solution of the following Poisson problem obtained from Eq. (37) with a Neumann boundary condition on ∂�

obtained from Eq. (42):(
βI − 	Pe2

s �
)

cn+1
k+1 = −γ cn

d − δcn−1
d − Pes∇ · mn+1

k ∀x ∈ �, (54)

	Pesn · ∇cn+1
k+1 = n · mn+1

k ∀x ∈ ∂�. (55)

The new values of the polarization field mn+1
k+1 and nematic tensor Dn+1

k+1 are then obtained, respectively, by solving the two 
problems(

(1 + β)I − 	Pe2
s �

)
mn+1

k+1 = −γ mn
d − δmn−1

d − Pes∇ ·
(

Dn+1
k + cn+1

k+1
I
2

)
+ Hn+1

m,k ∀x ∈ �, (56)

	Pesn · ∇mn+1
k+1 = n ·

(
Dn+1

k + cn+1
k+1

I
2

)
∀x ∈ ∂�, (57)

and (
(4 + β)I − 	Pe2

s �
)

Dn+1
k+1 = −γ Dn

d − δDn−1
d − Pes∇ ·

(
Tn+1

k+1 − mn+1
k+1

I
2

)
+ Hn+1

D,k ∀x ∈ �, (58)

	Pesn · ∇Dn+1
k+1 = n ·

(
Tn+1

k+1 − mn+1
k+1

I
2

)
∀x ∈ ∂�. (59)

We then compute the active fluid forcing α∇ · Dn+1
k+1 and use it to update the fluid velocity based on Eqs. (40)–(41) subject 

to the no-slip condition (22).
The iterative process terminates when the relative variations between two consecutive corrections of the concentration 

field are less than an arbitrary error tolerance

||cn+1
k+1 − cn+1

k ||∞
||cn+1|| < ε, (60)
k+1 ∞
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Fig. 1. Quadtree construction and tree representation. Starting from the root cell (blue) representing the entire computational domain, the mesh is recur-
sively adapted according to criteria (65) and (66). The level of a cell is defined as the number of splits needed to produce it. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

which we set to ε = 10−6. It is clear from the above formulation that the process, if it converges, must yield the desired 
solution. Our numerical experiments suggest that the method converges exponentially fast with the number of iterations, 
which is unsurprising due to the structure of Eqs. (54), (56) and (58), which are Poisson-like problems with extra diagonal 
coefficients. Once convergence has been achieved, the solution is updated, the mesh and time step are adapted based on 
the new solution, and all quantities are interpolated to the new mesh.

4. Implicit geometric representation: level set method

We employ the level set method to describe the confining domain geometry ∂�, which is represented implicitly by the 
zero contour of a level set function φ [42] such that

φ(x) = 0 ∀x ∈ ∂�, (61)

φ(x) ≤ 0 ∀x ∈ �. (62)

For numerical stability reasons, we impose it to be a signed distance function:

|∇φ| = 1 ∀x ∈ �. (63)

In practice, the level set function is generated at the very beginning of the algorithm, is reinitialized using a Total Variation 
Diminishing second-order Runge-Kutta method [36], and an original copy is stored aside. At each time step, after the mesh 
has been updated, a copy of the original level set is interpolated at the nodes of the new mesh and reinitialized to satisfy 
|∇φ| = 1 since interpolation does not preserve this condition. This copy is then used to compute the various solutions at 
the new time step. Both the value of the level set function (signed distance to the interface) and its normalized gradient

∇φ

|∇φ| = n (64)

are needed by the algorithm.

5. Quadtree grids

5.1. Tree construction and refinement strategy

In two dimensions, the computational domain is discretized using a Quadtree grid [51], which we continuously adapt to 
the geometry and solution. As illustrated in Fig. 1, the grid is constructed starting from a single cell (the root of the tree, 
level 0) corresponding to the entire computational domain, which we subdivide into four identical daughter cells (level 1). 
We then decide based on a refinement criterion to be specified later whether to further subdivide each of these cells into 
four identical cells (level 2). The procedure is recursively applied to the newly created cells until a termination criterion is 
attained. Formally, we define the level of a cell as the number of subdivisions required to create it, and denote by minlevel
and maxlevel the minimum and maximum refinement levels of the tree, respectively.

We employ two distinct refinement criteria based on geometry and on spatial variations of the desired solution. First, 
to ensure that the mesh is refined at its maximum resolution close to the domain boundaries [36] and has a prescribed 
minimum level minlevel, we split any cell C if

level(C) < minlevel, or min |φ(v)| ≤ Lip(φ)diag(C) and level(C) < maxlevel, (65)

v∈nodes(C)
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Fig. 2. Data layout: Velocity components (u, v) are stored at the faces of the cells, whereas pressure p and concentration c are stored at the cell centers. 
All the other quantities, such as the polarization m, nematic tensor D and level set φ are stored at the nodes of the mesh.

where Lip(φ) is the Lipschitz constant of the level set function φ, diag(C) is the length of the diagonal of cell C , and maxlevel
is the predefined maximum level of the tree. By replacing Lip(φ) by the appropriate quantity, the above criterion can easily 
be adapted to enforce the resolution inside a uniform band of arbitrary width surrounding the interface.

Second, to systematically adapt the mesh to the spatial variations of the solution variables (c, m, D, u), we recursively 
split any cell C in which the relative variation in the solution exceeds a fixed threshold T V :

max
v∈nodes(C)

max

( ||∇c(v)||∞
||c||∞ ,

||∇m(v)||∞
||m||∞ ,

||∇D(v)||∞
||D||∞ ,

||∇u(v)||∞
||u||∞

)
≥ T V and level(C) < maxV , (66)

where || · ||∞ is the L∞-norm and maxV is the maximum level of refinement for the gradient-based refinement.

5.2. Data structure

Fig. 2 illustrates how the data is laid out. Fluid flow variables (u, p) are stored using the standard Marker And Cell 
(MAC) scheme, with the pressure stored at cell centers and velocity components on cell faces. The concentration field c is 
also stored at the cell centers to allow for conservative discretizations of the diffusive and coupling terms in the Poisson 
problem (54) (see section 6.1). The choice of a conservative scheme for c is motivated by the desire to conserve the total 
mass of swimmers in the system; note, however, that the discretization of advective terms using the SLBDF method is 
non-conservative. The polarization m and nematic tensor D are both stored at the nodes of the Quadtree for increased 
accuracy (see section 6.2). Finally, following previous work [36,56–58,38,19], we also store values of the level set function φ
at the nodes.

For computational efficiency, we also store copies of the velocity and concentration field at the nodes. These copies are 
created as third-order accurate interpolations of the original quantities. They are used to reconstruct the semi-Lagrangian 
trajectories, interpolate the concentration at the departing points and calculate nonlinear coupling terms involving the con-
centration. Additionally, a copy of the polarization components interpolated at the faces is also stored. As we explain in the 
next section, this copy is used for discretization of the concentration equation (54).

6. Spatial discretizations

6.1. Finite volume method for the concentration

The Poisson problem (54) along with the Neumann boundary condition (55) is discretized using a second-order finite-
volume method. To each cell center i, we associate the control volume V i defined as the intersection of the cell Ci with the 
interior of the domain �:

V i = Ci ∩ �. (67)

Integrating Eq. (54) over V i and using the divergence theorem yields

β

∫
V i

cn+1
k+1 + 	Pe2

s

∫
∂V i

n · ∇cn+1
k+1 = −

∫
V i

(
γ cn

d − δcn−1
d

)
+ Pes

∫
V i

∇ · mn+1
k . (68)

Approximating volume integrals by the value of the integrand at the center of V i , we obtain:

βV ic
n+1
k+1(i) + 	Pe2

s

∫
n · ∇cn+1

k+1 = −V i

[
γ cn

d(i) − δcn−1
d (i)

]
+ Pes

∫
∇ · mn+1

k +O(�x3). (69)
∂V i V i
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Fig. 3. Cell-based finite volume method for the concentration field: general configuration away from (a) and close to (b) the interface.

In order to further discretize the remaining integrals, we distinguish mesh cells that are away from the domain boundaries 
from those that intersect it.

6.1.1. Away from domain boundaries
Far away from walls, the control volume V i is simply the grid cell Ci , the contour ∂Ci is the contour of the cell and 

therefore discretizing Eq. (69) requires approximating the fluxes n · ∇cn+1
k+1 on each of the faces of the cell. For example, 

referring to Fig. 3(a), the discretization at cell 2 requires calculation of the fluxes at faces 1, 2, 3, 4 and 5. In general, for any 
such cell Ci , the normal gradient of concentration n · ∇cn+1

k+1

∣∣
f across face f is approximated with second-order accuracy 

following the method presented in [30] and using the formulation of [19] as

n · ∇cn+1
k+1

∣∣
f =

∑
j∈C( f )

j �=i

si j

�ci

(
cn+1

k+1(i) − cn+1
k+1( j)

� f

)
+O(�x2), (70)

where C( f ) is the set of indices of cells connected to face f (i.e., the cell neighbors of face f ). If the face f separates two 
cells of equal size, then this set only contains these two cells. For instance, in Fig. 3(a) we have C(1) = {2, 5}. If f separates 
two cells of different sizes, we denote by CL the larger cell and define C( f ) as the list of cell neighbors of CL across its side 
containing f , including CL itself. As an example, face 2 in Fig. 3(a) separates cells 0 and 2, where the large cell is 0 with 
face 2 on its right side. Therefore C(2) is the set of right cell neighbors of cell 0, including 0 itself: C(2) = {0, 1, 2, 3, 4}.

The coefficient si j is the length of the segment separating cells i and j, �ci is the linear size of cell i, and the average 
distance � f is defined as:

� f =
∑

j∈C( f )
j �=i

si j

�ci

(
δ f i − δ f j

)
, (71)

where δ f i is the signed distance from cell i to face f .
The last term in Eq. (69) is approximated using the copy of the polarization at the cell faces and the formula for the 

discrete divergence presented in [19]. Specifically, for cell i,

∇ · mn+1
k

∣∣
i = − 1

�ci

∑
j∈F (i)

s jm̃
n+1
k ( j)

A j

δ ji

|δ ji | +O(�x2) where A f = 1

2

∑
j∈C( f )

s j, (72)

where F (i) is the set of faces in contact with cell i, and m̃n+1
k ( j) is the normal component of the polarization at face j.

6.1.2. Close to the interface
The finite volume equation (69) applied to a cell i that intersects the boundary (Ci ∩ � �= ∅) simplifies to

βV ic
n+1
k+1(i) + Pes

∫
∂V i−∂�

n ·
(
	Pes∇cn+1

k+1 + mn+1
k

)
= −V i

[
γ cn

d(i) − δcn−1
d (i)

]
+O(�x3), (73)

where we have used the boundary condition (55) to cancel out the flux across ∂�, and where the area V i of the control 
volume is approximated with second-order accuracy using the technique described in [35]. The only term that remains to 
be discretized is the contour integral over ∂V i − ∂�. This is achieved using the approximation
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Fig. 4. Hybrid finite difference/volume method on a Quadtree. (a) Away from the interface, finite differences can be used systematically by defining ghost 
nodes and values when T-junctions occur. (b) The finite volume method is used close to the interface, where Neumann boundary conditions need to be 
enforced.

∫
∂V i−∂�

n ·
(
	Pes∇cn+1

k+1 + mn+1
k

)
=

∑
j∈N(i)

Li j

(
	Pes

cn+1
k+1( j) − cn+1

k+1(i)

�x
+ m̃n+1

k (i, j)

)
+O(�x3), (74)

where N(i) is the set of the direct cell neighbors of cell i, Li j is the fraction of the face separating cells i and j that is 
contained in the domain � (see Fig. 3), and m̃n+1

k (i, j) is the interpolation of the normal component of the polarization 
at the center of the face separating cells i and j. We note that if one of the direct cell neighbors k of cell i is not at 
least partially inside the domain � (for example, cell 6 in Fig. 3), then the length fraction Lik is zero and cell k does not 
contribute to Eq. (74) as expected.

6.1.3. Remarks
The linear system resulting from the combination of these two discretization strategies is symmetric positive definite. 

Furthermore, it can be shown using formulas (70), (72) and (74) that the discretization of the diffusive and coupling effects 
is conservative, i.e., it preserves the total mass in the system. Our discretization of the advective terms (SLBDF), however, 
does not share this property and can therefore introduce variations in the total mass. Based on the accuracy of the above 
discretizations, we expect the determination of cn+1

k+1 to be second-order accurate.
Once the new concentration field has been computed in � as a solution of the discretized system, it is extended to 

the entire domain using a geometric extension procedure [19]. From this extension, the nodal copy is constructed using a 
third-order-accurate least-squares interpolation.

6.2. Higher moments: hybrid finite difference/finite volume method

Equations (56) and (58) for the polarization and nematic tensor fields are discretized in space using the second-order 
hybrid finite difference/finite volume method we developed in [56]. Because mn+1

k+1 and Dn+1
k+1 are tensors of order 1 and 2, 

respectively, this procedure must be applied to all their components: mx , my , Dxx , Dxy , D yx and D yy in two dimensions.

6.2.1. Finite differences on a Quadtree
The right-hand sides in Eqs. (56), (58) and boundary conditions (57), (59) are discretized using the Finite Difference 

on Quadtree method of Min et al. [37,36]. To illustrate how these discretizations are constructed we consider the general 
configuration shown in Fig. 4. Assume that we are interested in discretizing a node-based quantity ψ at node 0, which has 
three direct neighbors {3, 4, 5} but none in the left direction. To compensate for this missing neighbor, a ghost node G is 
introduced, where we approximate the quantity ψ with third-order accuracy using existing neighboring nodes:

ψG = ψ2s1 + ψ1s2

s1 + s2
− s1s2

s3 + s4

(
ψ3 − ψ0

s3
+ ψ4 − ψ0

s4

)
+O

(
�x3

)
, (75)

where �x is the maximum spatial resolution. Using the above ghost value along with classical second-order finite-difference 
formulas, the standard differential operators can be discretized. For example the discrete first and second derivatives in the 
x-direction at node 0 are expressed as

D0
x (ψ) = ψ5 − ψ0

s5

sG

s5 + sG
+ ψ0 − ψG

sG

s5

s5 + sG
, (76)

D0
xx(ψ) = 2

(
ψ5 − ψ0 + ψG − ψ0

)
, (77)
s5 + sG s5 sG
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and similarly in the y-direction

D0
y(ψ) = ψ3 − ψ0

s3

s3

s3 + s4
+ ψ0 − ψ4

s4

s4

s3 + s4
, (78)

D0
yy(ψ) = 2

s3 + s4

(
ψ3 − ψ0

s3
+ ψ4 − ψ0

s4

)
. (79)

A standard Taylor series analysis shows that the above formulas for the first derivatives D0
x , D0

y are second-order accurate, 
while those for D0

xx , D0
yy are at least first-order accurate. In practice, both are found to be second-order accurate, and we 

refer the interested reader to [37,36,38,39] for convergence results.
Using the above discretization formulas and third-order extensions of the nodal values, the right-hand sides of Eq. (56), 

(58) and boundary conditions (57), (59) can be discretized at every node of the mesh with second-order accuracy, yielding

(
−γ mn

d − δmn−1
d − Pes∇ ·

(
Dn+1

k + cn+1
k+1

I
2

)
+ Hn+1

m,k

) ∣∣∣
i
= Rm(i) +O(�x2), (80)(

−γ Dn
d − δDn−1

d − Pes∇ ·
(

Tn+1
k+1 − mn+1

k+1
I
2

)
+ Hn+1

D,k

) ∣∣∣
i
= RD(i) +O(�x2),

and

	Pe2
s n · ∇mn+1

k+1 = Gm(i) +O(�x2), (81)

	Pe2
s n · ∇Dn+1

k+1 = GD(i) +O(�x2).

At nodes away from the interface, the diffusive terms in the left-hand sides of (56), (58) are also approximated using the 
same finite difference technique.

6.2.2. Finite volumes
Close to the interface, where the mesh is uniform and the Neumann boundary conditions (57), (59) need to be enforced, 

Eqs. (56), (58) are discretized using a finite volume method. Since both equations have the same form, we only show details 
for the polarization. To any node i close to the interface we associate a control volume V i defined as the intersection of the 
square Si centered at i and of size �x with � (see Fig. 4). Integrating Eq. (56) over V i and applying Gauss’s theorem yields

∫
V i

(1 + β)mn+1
k+1 +

∫
∂V i

	Pe2
s n · ∇mn+1

k+1 =
∫
V i

(
−γ mn

d − δmn−1
d − Pes∇ ·

(
Dn+1

k + cn+1
k+1

I
2

)
+ Hn+1

m,k

)
. (82)

The integral on the right-hand side is approximated with second-order accuracy using the finite difference approximation 
(80) and the volume integral techniques discussed in [35]. The volume integral on the left-hand side is approximated using 
V i and the node value as

∫
V i

(1 + β)mn+1
k+1 = V i(1 + β)mn+1

k+1(i) +O(�x4). (83)

The remaining contour integral over ∂V i is first decomposed into two parts

∫
∂V i

	Pe2
s n · ∇mn+1

k+1 =
∫

∂V i−∂�

	Pe2
s n · ∇mn+1

k+1 +
∫
∂�

	Pe2
s n · ∇mn+1

k+1 . (84)

The first integral over ∂V i − ∂� is treated exactly like the contour integral for the concentration in section 6.1: if N(i) are 
the direct neighbors of node i and Li j is the fraction of the sides of Si separating nodes i and j (see Fig. 4), then

∫
∂V i−∂�

	Pe2
s n · ∇mn+1

k+1 =
∑

j∈N(i)

Li j
mn+1

k+1( j) − mn+1
k+1(i)

�x
+O(�x3). (85)

The second integral over ∂� is calculated using the finite difference approximation (81) and the contour integral procedure 
described in [35].



12 M. Theillard, D. Saintillan / Journal of Computational Physics 397 (2019) 108841
6.2.3. Remarks
As for the concentration, we expect both the polarization and nematic order to be second-order accurate in L∞-norm, 

based on our approximations and on the accuracy of the computational techniques (extensions, volume and contour integra-
tions, interpolations). Unlike for the concentration, whose discretization results in a linear system that is symmetric positive 
definite, the discretized systems for the higher moments are only positive definite. The symmetry is lost when using the 
finite difference method to discretize the diffusive terms. In practice, the linear systems are solved using a Bi-Conjugate 
Gradient Stabilized method with a Multigrid solver [58] acting as a preconditioner. As for the concentration, all moment 
components are extended to the entire domain with a third-order extension procedure [3,36] so that interpolations and 
numerical derivatives can be accurately computed close to the interface.

6.3. Projection of the nematic tensor

The nematic tensor D as defined in Eq. (9) is trace-free and symmetric. In theory, we could get away with solving for only 
two components of D (one diagonal and one off-diagonal) and reconstruct the other two. In practice, we cannot decide a 
priori which diagonal/off-diagonal components to solve for as they may differ by numerical errors. We therefore solve for all 
four components of Dn+1

k+1 and project the result on the space of trace-free symmetric tensors. Omitting the sub/superscripts, 
the projected tensor P(D) is obtained as

P(D) = D − Tr(D)

2
I − D − DT

2
, (86)

where Tr(D) is the trace of D, and DT is its transpose. This projection is stable in any tensor norm ‖ · ‖, i.e.,

‖P(D)‖ ≤ ‖D‖, (87)

and therefore it does not affect the stability of the overall method.

Proof. As all norms are equivalent in finite dimension, we choose to use the Frobenius norm ‖D‖2 = D : D. To prove the 
stability of the projection, it is sufficient to prove that it is orthogonal, i.e.,

P(D) : (P(D) − D) = 0, (88)

since it implies that

‖D‖2 = ‖P(D) − (P(D) − D)‖2 = ‖P(D)‖2 + ‖P(D) − D‖2 ≥ ‖P(D)‖2. (89)

Expanding Eq. (88), we obtain

P(D) : (P(D) − D) = 1

2
Tr (P(D)) Tr (D) −P(D) : D − DT

2
. (90)

Since P(D) is trace-free by construction, the first term vanishes and, after a second expansion, we are left with

P(D) : (P(D) − D) = −1

2

(
‖D‖2 − D : DT − 1

2
Tr(D)Tr(D − DT ) − 1

2
‖D − DT ‖2

)
, (91)

= −1

4

(
−Tr(D)Tr(D − DT ) + ‖D‖2 − ‖DT ‖2

)
. (92)

Because D − DT has zeros on its diagonal and ‖DT ‖ = ‖D‖, the right-hand side vanishes and Eq. (88) is satisfied. �
6.4. Fluid flow

At each time step, we differentiate the newly obtained nematic order tensor Dn+1
k+1 using the finite difference method 

described in section 6.2.1 to compute the active force density α∇ · Dn+1
k+1 . The momentum and continuity equations (40)

and (41) for the motion of the fluid are then solved using the incompressible Navier-Stokes solver previously developed by 
Guittet, Theillard & Gibou in [19], where the active force density enters as a standard body force.

While we omit details of the method for brevity and refer the interested to the original article [19], we would like to 
comment on its stability and accuracy. First, the Navier-Stokes solver was shown to be unconditionally stable and therefore 
does not compromise the stability of the overall algorithm or add any time step restriction. Second, we note that the velocity 
field produced by the solver is less than second-order accurate, but has at least first-order accuracy. In light of our previous 
remarks, we therefore expect the velocity field to be the least accurate quantity and to limit the accuracy on the other parts 
of the solution.
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6.5. Time step

Since both the time discretization and the fluid solver are stable, the choice of time step is motivated primarily by the 
convergence of functional iterations, the desired accuracy of the solution and constraints on computational time. Specifically, 
we define the time step based on the current fluid velocity u and apparent mean swimming velocity v = Pesm/c as

�tn = max

(
1

‖u‖∞
,

1

‖v‖∞
,1

)
�x, (93)

where �x is the minimum grid size. Using this definition, we find that functional iterations converge exponentially fast, and 
the numerical solution was obtained rapidly with a good accuracy.

7. Numerical examples

We illustrate the capabilities of our method on a number of examples in both two and three dimensions. The examples 
are motivated by previous experiments on suspensions of swimming bacteria, and consequently we take ζ = 1, which 
corresponds to slender swimmers. We also assume that inertial effects are negligible (as is typically the case in bacterial 
suspensions and other active fluids) and therefore set the Reynolds number to Re = 10−6.

7.1. Code validation

7.1.1. Steady-state analytical solution for the first two moments
Analytical solutions of the non-linear coupled system of Eqs. (10), (11), (12) and (20), (21) for arbitrary parameters 

and geometries are unavailable in general. The system can, however, be simplified in certain geometries after introducing 
additional assumptions. We consider here the case of a two-dimensional circular domain of radius a, where we assume 
axisymmetry for the solution and neglect the nematic tensor (D = 0). This approximation, while seemingly crude, has been 
shown in the past to yield solutions that are close to the full system [55]. Under these assumptions, there is no fluid flow 
in the system, and the steady concentration and radial polarization profiles can be obtained analytically as

cexact(r) = c0 + c1I0(ρr), (94)

mr,exact(r) = c1	PesρI1(ρr), (95)

where Iν(x) is the modified Bessel function of the first kind of order ν , and the constants ρ , c0, c1 are given by

ρ =
√

	Pes − 1

	Pes
, (96)

c0 =
(

1 + 2I1(ρa)

aρ
[
	2 Pe2

s ρ2 (I0(ρa) + I2(ρa)) − I0(ρa)
]
)−1

, (97)

c1 = c0

	2 Pe2
s ρ2

(
I0(ρa) + I2(ρa)

) − I0(ρa)
. (98)

We validate our numerical approach by comparing the above solution to a numerical solution obtained by neglecting D. We 
choose the parameters and initial conditions as follows:

Pes = 1, 	 = 1, a = 0.5, c(r,0) = 1, m(r,0) = 0, t f = 50, �t = 20�x, � = [−1,1]2, (99)

where t f is the final time and �x the minimum grid resolution. The numerical solution is run to steady state and compared 
to Eqs. (94)–(95). To estimate the order of convergence of our method, we first run the simulation on a grid with maxlevel =
5 and minlevel = 2, and then recursively repeat the same calculation on finer grids, each time increasing minlevel and maxlevel
by one. The mesh is only refined in the vicinity of the boundary, where the gradients in the solution are located. By 
this method, the spatial resolution is almost systematically divided by a factor of 2 everywhere in the domain from one 
simulation to the next, and the ratio of the error on these two grids thus provides an estimate for the convergence order. 
The L∞-errors for both moments as functions of time are depicted in Fig. 5, and the estimated orders of convergence 
are given in Table 1. We observe second-order convergence for both quantities, which is consistent with our theoretical 
predictions in sections 6.1 and 6.2. In addition to converging with the expected order, both errors are reasonably small even 
on the coarsest grids. Their values provide rough estimates of expected errors on the moments in other cases with similar 
parameters when the fluid flow and nematic order tensor are no longer neglected and should help select the tree resolution 
in these situations.

This example does not validate our time discretization (SLBDF method) nor the discretization of the nematic tensor. 
Nevertheless, the equations for the nematic tensor and polarization are discretized using the same approach so we expect 
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Fig. 5. Comparison with the analytical solution of Eqs. (94) and (95): L∞-error of the concentration (a) and polarization (b) as functions of time. The red 
curves are associated to the coarsest levels, the blue ones with the finest ones.

Table 1
Final errors and corresponding estimates for the orders of convergence of the con-
centration and polarization, in the case of the analytical example of section 7.1.1.

Quadtree level Concentration Polarization

(min / max) L∞ error Order L∞ error Order

2 / 5 6.381 × 10−4 – 2.914 × 10−4 –
3 / 6 3.071 × 10−4 1.055 1.122 × 10−4 1.379
4 / 7 9.701 × 10−5 1.661 3.060 × 10−5 1.874
5 / 8 2.803 × 10−5 1.791 8.778 × 10−6 1.801
6 / 9 7.675 × 10−6 1.869 2.330 × 10−6 1.913
7 / 10 1.928 × 10−6 1.993 5.845 × 10−7 1.995
8 / 11 4.767 × 10−7 2.016 1.453 × 10−7 2.008

both quantities to converge at similar rates. Additionally, we refer the interested reader to [7,19,36] for a detailed analysis 
of the SLBDF method used here. Overall, we are confident that our method is correctly implemented and that it accurately 
captures the evolution of these three moments in the absence of flow.

7.1.2. Parasitic flows in suspensions of pullers
As a further test of our method, we analyze the dynamics in a suspension of so-called puller particles for which α > 0. 

In this system, active stresses are known to have a stabilizing effect and to damp any fluid flow, leading to a quiescent 
steady state. This provides a simple benchmark for our code, as the magnitude of any parasitic fluid flow that persists in 
the system at steady state quantifies numerical errors. We perform two-dimensional simulations in a circular disk of radius 
a with parameters

Pes = 1, 	 = 1, α = 50, a = 0.5, t f = 10, �t = 20�x, � = [−1,1]2. (100)

The mesh is automatically refined using the refinement criteria discussed in section 5.1, with the following parameters:

T V = 0.02, maxV = maxlevel − 1, minlevel = 3, (101)

and multiple identical simulations are performed on grids with increasing values of maxlevel. The convergence of the method 
is validated by monitoring mass losses as well as the norm of the parasitic fluid velocity as functions of time. Fig. 6 shows 
both quantities, and the corresponding estimates for the order of accuracy are given in Table 2. The convergence of the 
parasitic flows is consistent with the accuracy of the flow solver as discussed previously, with an order between 1 and 2. 
Since the moments are now coupled to the flow through the gradient of the velocity field, their accuracy is limited by that 
of the velocity gradient, which is less accurate than the velocity. This explains the slower convergence reported in Table 2
for the total mass.

7.2. Instabilities and spontaneous flows in pusher suspensions in circular domains

We now turn our attention to the active fluid flow generated by a suspension of pushers (α < 0) in a circular domain of 
radius a. This case is representative of suspensions of bacteria and is known to exhibit transitions to spontaneous flows as a 
result of hydrodynamic instabilities driven by active stresses [48,49,46,15,55]. We use the following physical and numerical 
parameters:

Pes = 0.5, 	 = 0.1, a = 0.5, t f = 5, � = [−1,1]2, (102)

and we systematically vary the magnitude α of the active stress tensor.
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Fig. 6. Suspension of pullers: total concentration variation (a) and magnitude of the parasitic flow (b) as functions of time. The red curves are associated to 
the coarsest levels, the blue ones with the finest ones.

Table 2
Final errors and corresponding estimates for the orders of convergence of the total 
mass and norm of the parasitic flow in the example of section 7.1.2.

maxlevel Total mass Velocity

Error Order L∞ error Order

3 1.796 × 10−2 – 1.491 × 10−2 –
4 3.388 × 10−2 −0.915 7.340 × 10−3 1.023
5 1.672 × 10−2 1.018 4.663 × 10−3 0.654
6 7.093 × 10−3 1.237 1.890 × 10−3 1.302
7 2.191 × 10−3 1.695 8.340 × 10−4 1.181
8 8.429 × 10−2 −5.265 3.907 × 10−4 1.094
9 4.707 × 10−3 4.162 1.616 × 10−4 1.274
10 3.736 × 10−3 0.333 5.255 × 10−5 1.621
11 1.910 × 10−3 0.967 1.590 × 10−5 1.724

Fig. 7. Typical flow patterns in an active suspension confined inside a circular disk. Simulations are performed on a grid with maxlevel = 8, for 	 = 0.1, 
Pes = 0.5 and increasing activity levels. Both the streamlines of the net velocity and the concentration field are shown.

We previously analyzed this problem in our recent work [55], where we considered a variety of elementary geometries 
and also characterized the transitions between regimes using stability analyses; we only briefly summarize the results here, 
and the reader is referred to [55] for a more detailed analysis and discussion of the dynamics as well as comparison with 
experiments. Our study identified three typical states, which Fig. 7 illustrates. The transitions between these three states can 
be observed by increasing the activity level |α| while maintaining all other parameters constant. At low levels of activity 
(Fig. 7, α = −1), the swimmers accumulate at the boundary and have a net average polarization towards the wall. This 
wall accumulation is a hallmark of suspensions of self-propelled particles and has been characterized in both experiments 
[43,28,27] and models [26,10,11,14]. There is no fluid flow in this regime, and the solution is similar to the analytical 
solution discussed in 7.1.1 (e.g., radial symmetry, wall accumulation and wall-normal polarization, weak nematic alignment). 
At intermediate levels of activity (α = −20), a spontaneous steady azimuthal fluid flow emerges causing the swimmers 
to reorient against the flow. The resulting apparent velocity exhibits a double vortex structure similar to that observed 



16 M. Theillard, D. Saintillan / Journal of Computational Physics 397 (2019) 108841
Fig. 8. Suspensions of pushers inside a disk: spontaneous flow destabilization at high activity level (	 = 0.1, Pes = 0.5 and α = −200), for times between 
0 and 1. The adaptive mesh is also shown to illustrate how it is dynamically adapted to the solution.

Fig. 9. Adaptive mesh refinement for a suspension of pushers inside a disk in the unstable regime: (left) concentration profile, and (right) successive zoom 
on the adaptive mesh at time t f = 0.6. Parameter values: 	 = 0.1, Pes = 0.3 and α = −300.

experimentally by Wioland et al. [63,32]. This transition was explained in our previous work [55] as the result of a linear 
instability of the quiescent state, which is driven by active stresses. In very active systems (α = −200), the double-vortex 
is no longer stable and the system transitions to a chaotic regime characterized by unsteady swirls and vortices similar to 
those observed in bulk systems [15]. Fig. 8 illustrates the destabilization process in this regime.

Fig. 9 illustrates the automatic mesh refinement to the solution for a suspension of pushers in the unsteady chaotic 
regime (Pes = 0.3, 	 = 0.1, α = −300) using a high resolution grid (maxlevel = 11, T V = T M = 0.05, maxV = maxC = 10, 
minlevel = 3) at a final time of t f = 0.6. The total number of nodes is 87 532 which is only 2.09% of the size of a uniform 
mesh with the same maximum resolution. Because the refinement criterion (66) depends continuously on the solution, we 
find that the mesh is almost graded. Yet non-gradedness does arise in some regions, typically close to the interface.

7.3. Active fluid flows in periodic lattices

Inspired by the microfluidic experiments of Wioland et al. [62], we now apply our simulation method to study active 
flows in periodic lattices. The geometry of the lattice is described in Fig. 10, and is composed of circular chambers connected 
by junctions. We select parameters such that a steady double vortex would spontaneously emerge in the unit cell when the 
junctions are closed and study how the direction of rotation between adjacent cells and the overall system dynamics depend 
on the width of the gap (2a) connecting them. Specifically, we use the parameters

Pes = 2, 	 = 0.1, α = −100, t f = 5, � = [0,20]2, (103)

and the mesh is constructed using

maxlevel = 11, T V = T M = 0.02, maxV = maxC = 10, minlevel = 3. (104)
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Fig. 10. Active flows in lattices: geometric parametrization. For the simulations presented here we use a lattice with 17 × 13 individual cells. We take the 
diameter of the unit cell to be L = 1 and set b = 0.0278.

Following [62], we define the time-averaged normalized spin-spin correlation as

χ = 1

t f

t f∫
0

∑
i∼ j ωiω j∑

i∼ j |ωiω j| , (105)

where the sums are over all pairs of adjacent cells, and where ωi denotes the average signed scalar vorticity of the apparent 
swimming velocity in cell i:

ωi = ẑ ·
∫
i

∇ ×
(

u + Pes

c
m

)
. (106)

From the above definition, we see that χ = 1 if the net flow is rotating in the same direction in every single cell. On 
the contrary, χ = −1 in a system where the direction of rotation systematically alternates between adjacent cells. Finally, 
we expect χ ≈ 0 in a system where the direction of rotation of adjacent cells is completely uncorrelated, so that a pair 
is equally likely to rotate in the same direction as in the opposite direction. We also define the time-averaged relative 
asymmetry between the populations N+ of anticlockwise cells (ωi > 0) and N− of clockwise cells (ωi < 0):

δ = 1

t f

t f∫
0

N+ − N−
N+ + N−

. (107)

In a perfectly symmetric or uncorrelated system we expect N+ = N− and therefore δ = 0, whereas δ = ±1 describes a 
system in which nearly all the cells are rotating in the same direction.

Snapshots from a series of simulations in lattices with increasing gap size a are shown in Fig. 11, and corresponding data 
for χ and δ as functions of a is plotted in Fig. 12. In the limit of vanishing gap size (a → 0) the cells are disconnected and 
the direction of rotation in a given cell becomes independent of its neighbors (χ → 0). As the gap is enlarged, hydrodynamic 
stresses and transport across junctions lead to interactions between cells, first causing a positive correlation between the 
direction of rotation of adjacent cells (χ > 0). This is the case of a = 0.075 and 0.1 in Fig. 11, where we measure χ = 0.46
and 0.31. This positive correlation results in large steady patches of co-rotating cells, with larger values of χ corresponding 
to larger patch sizes. In this regime, we note that the flow in each cell is nearly identical everywhere (up to the direction 
of rotation), and resembles the double vortex in circular chambers (Fig. 7). As first proposed by Wioland et al. [62], who 
reported similar trends in their experiments, this positive correlation is consistent with the well-known tendency of swim-
mers to swim along boundaries. Note that Wioland et al. also reported a negative correlation in the limit of extremely small 
gaps, which they attributed to the inability of bacteria to enter the gaps; this regime is not seen in our simulations, which 
do not take finite swimmer size into account.

Increasing a beyond ≈ 0.1 causes a decrease in χ , and the positively correlated state persists for openings up to 
a ≈ 0.225. For this value of a we measure χ = −8 × 10−4, and inspection of the flow patterns in Fig. 11 indeed shows 
no evidence of correlation, with equal likelihood for a pair of adjacent cells to co- or counter-rotate. The increase in gap 
width is also seen to have an effect on the flow patterns: while an underlying double vortex is visible in each cell, more 
complex flow structures involving jets between adjacent cells and circulating flows around pillars or groups of pillars be-
come noticeable.
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Fig. 11. Active flows in lattices: flow patterns for increasing gap opening a. The streamlines of the net bacterial flow are colored by vorticity, where green 
corresponds to clockwise rotation and blue to counterclockwise.

As the size of the junctions keeps on increasing (a = 0.25, 0.3, 0.48 in Fig. 11), the flow becomes systematically unsteady 
and increasingly more complex, with fluid jets that travel across the lattice spanning multiple cells. The emergence of 
these complex patterns is the result of the diminishing influence of the walls, which allows for an increasing number of 
unsteady modes to grow and interact in the system. In spite of the chaotic nature of the flow, vorticity remains noticeably 
anti-correlated between adjacent cells, as confirmed by the values of χ < 0 in Fig. 12. This remains true even for the 
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Fig. 12. Average spin-spin correlation χ defined in Eq. (105), and time-averaged relative asymmetry δ between clockwise and counterclockwise cells defined 
in Eq. (107).

smallest pillars (a = 0.48), which still set the dominant wavelength of the flow and serve to guide the bacterial jets across 
the lattice. The dynamics in this case is also consistent with the recent experiments of Nishiguchi et al. [41] on bacteria 
in pillar arrays, where similar chaotic flows were observed with a coherence length set by the lattice spacing. By simply 
varying a, our simulations reveal a rich variety of flow patterns and thus demonstrate the ability of judiciously designed 
periodic lattices to control bacterial flow on a wide range of scales, from the pore scale to the patch size.

While the spin-spin correlation χ shows clear trends with increasing gap size with a transition from positive to negative 
correlation, the relative asymmetry δ remains between ±0.1 for all values of a. This suggests that clockwise/counterclock-
wise symmetry is essentially preserved on large length scales. Nevertheless, we note that the largest fluctuations in δ occur 
when χ ≈ 0, i.e. when the coupling between adjacent cells is the weakest, which could indicate that global symmetry is in 
fact favored in strongly interacting lattice flows. The fact that δ is reasonably well centered around 0 is also an indication 
that our numerical method does not introduce a preferred direction of rotation.

7.4. Three-dimensional simulations

In this last section, we present numerical results in three spatial dimensions, illustrating the ability of our mathematical 
and computational methods to be extended to 3D and opening the way for future potential exploration. The 3D compu-
tational approach follows the same numerical techniques as in 2D and shares the same accuracy, stability and adaptivity 
properties. The domain geometries we consider here, namely spherical cavities and periodic channels, are 3D analogs of the 
2D geometries analyzed in our previous study [55].

7.4.1. Spherical cavity
For this first example, we consider the active flow in a suspension of pushers confined inside a spherical cavity of 

diameter 1. As for the 2D case of section 7.2, we choose

Pes = 0.5, 	 = 0.1, t f = 5, � = [−1,1]3, (108)

and consider three levels of activity α = −1, −20, −200. We perform simulations on a three-dimensional Octree grid with 
a maximum level of 7, which contains on the order of 400,000 grid points. Each time step takes between 5 and 10 minutes 
using OpenMP and ten threads on a desktop computer.

The simulated flow patterns are depicted in Fig. 13. The 3D solutions show patterns that could have been anticipated 
from the 2D case. At low levels of activity, there is no active flow and the distribution of swimmers is radial with accumu-
lation at the boundary accompanied by wall-normal polarization. As activity increases, a steady three-dimensional double 
vortex emerges spontaneously, with an axis of rotation which is selected arbitrarily by the system. Finally, 3D chaotic dy-
namics are observed at the highest activity level.

7.4.2. Torus
Next, we simulate active flows inside a periodic channel shaped as a torus with inner radius Rmin = 0.5 and width 

W = 1. The associated level set function is

φ(x, y, z) =
[(√

x2 + y2 − Rmin − W

2

)2

+ z2

] 1
2

− W

2
. (109)

We choose the parameters as

Pes = 0.5, 	 = 0.5, t f = 5, � = [−2.25,2.25]3, maxlevel = 7, T V = 0.02, maxV = 6, (110)

and analyze active flows with increasing activity levels.
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Fig. 13. Active flow in a pusher suspension confined inside a spherical cavity. The figure shows streamlines of the net swimmer velocity, with colors 
corresponding to the velocity magnitude. As in the 2D example of Fig. 7, we take 	 = 0.1, Pes = 0.5 and vary the level of activity: from left to right 
α = −1, −20, −200. Simulations are performed on a Octree grid with maxlevel = 7.

Fig. 14. Active flows inside a periodic channel shaped as a torus for increasing activity levels α. The concentration field (colors) is superimposed onto 
streamlines of the net swimmer velocity. From top left to bottom right: α = −20, −50, −70, −90.

Once again, the simulated active flows resemble those observed in our previous work [55] in 2D periodic channels, 
with four distinct flow regimes as illustrated in Fig. 14. At low levels of activity (α = −20), the fluid is quiescent and 
swimmers preferentially accumulate at the wall, aligning in the normal direction on average. As activity increases (α =
−50), a spontaneous steady flow emerges in an arbitrary direction, which is azimuthally symmetric and against which 
the swimmers propel. As activity is increased further (α = −70), the steady flow persists but axisymmetry is lost and we 
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Fig. 15. Active flows in suspensions of pushers confined inside the gap between two concentric cylinders, for increasing activity levels. From left to right: 
α = −1, −20, −50, −90.

observe evenly spaced clusters of swimmers that are transported as density waves. At high activity levels (α = −90), the 
flow eventually destabilizes and becomes unsteady and chaotic as already observed in other geometries.

7.4.3. Concentric cylinders
As a final example, we conduct a similar analysis in another periodic domain defined as the gap between two concentric 

cylinders with inner radius Rmin = 0.5, gap width W = 1, and bounded in the axial direction with a height of H = 4 (see 
Fig. 15). The level set function for this geometry is defined as

φ(x, y, z) = max

{√
x2 + y2 − Rmin − W , Rmin −

√
x2 + y2 , |z| − H

2

}
. (111)

All other physical and computational parameters (Pes, 	, t f , �, maxlevel, T V , maxV ) are chosen as in Eq. (110).
Typical flow patterns and concentration fields are shown in Fig. 15 for α = −20, −50, −70, −90. Similar flow transitions 

as in previous geometries occur. In weakly active systems, swimmers simply accumulate at the walls, and do not drive any 
net flow. Interestingly, we find that accumulation is maximum at corners, in agreement with experimental observations 
[16]. Upon increasing |α|, a transition to a flowing state is observed, which is primarily azimuthal with some vertical fluc-
tuations. This ultimately leads to chaotic dynamics in strongly active systems. A key difference with the flows observed in 
the torus in section 7.4.2 can be noted: the sizeable height of the domain indeed allows for significant unsteady motions in 
the z direction, which are superimposed onto the net azimuthal flow and likely play a role in its destabilization. These ob-
servations are consistent with experiments on microtubule/kinesin cluster solutions in a similar geometry [65], which have 
shown a subtle dependence on channel aspect ratio with a disruption of azimuthal flow in tall channels. The spontaneous 
emergence of azimuthal flow in this geometry also underlies rheological measurements on bacterial suspensions in circular 
Couette cells [29], which report a net angular velocity at zero torque in sufficiently concentrated systems.

8. Conclusion

We have presented a novel numerical approach for the efficient simulation of the dynamics of active fluids in var-
ious confined microfluidic geometries. Our simulations are based on a mean-field continuum model for suspensions of 
microswimmers such as bacteria or self-propelled colloids, which consists of coupled advection-diffusion equations for the 
swimmer concentration, polarization, and nematic tensor along with the forced Navier-Stokes equations for the fluid flow in-
duced by internal active stresses. The difficulty in simulating this system in complex geometries stems from the importance 



22 M. Theillard, D. Saintillan / Journal of Computational Physics 397 (2019) 108841
of accurately resolving microstructural variables in the vicinity of boundaries, where swimmers are known to accumulate, 
while also capturing unsteady flow features in the bulk fluid. As a result, most prior simulations have been limited to two 
dimensions and simple geometries, and our approach takes a major step towards extending our understanding of active 
fluid flows to complex three-dimensional systems.

The versatility of our method hinges on the use of level sets to represent complex domain shapes, along with adaptively 
refined Quad-/Octree grids that are ideally suited for capturing the wide range of scales present in the system. A novel 
hybrid spatial discretization was also introduced, which employs finite volumes for the concentration field so as to ensure 
mass conservation, while using a combination of finite volumes and finite differences for the polarization and nematic 
fields, which provides enhanced accuracy while easily satisfying Neumann boundary conditions at the walls. Finally, an 
unconditionally stable projection solver for the incompressible Navier-Stokes equations developed in previous work was 
adopted for the active fluid flow.

We illustrated our approach by analyzing spontaneous active flows in a variety of microfluidic geometries in both two 
and three dimensions, which were inspired by recent experiments on bacterial suspensions. Our results were all consistent 
with experimental observations and demonstrated the ability of our model to capture subtle features such as wall accumula-
tion layers, spontaneous flow transitions, double vortices, and large-scale synchronization. While a complete characterization 
of active fluid dynamics in arbitrary geometries remains to be done, these results highlight the potential of our framework 
to be applied towards this goal. The efficiency of our approach also makes it an ideal choice for design applications relying 
on shape optimization. Our method can also easily be extended to model other types of active matter systems, such as 
active nematic gels [33], or to account for other physical effects such as chemotaxis [13,31], externally applied fields [2] or 
imposed flows [1].
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