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Large-scale simulations of non-Brownian rigid fibers sedimenting under gravity at zero Reynolds
number have been performed using a fast algorithm. The mathematical formulation follows the
previous simulations by Butler and Shagf¢tDynamic simulations of the inhomogeneous
sedimentation of rigid fibres,” J. Fluid MecH68 205(2002]. The motion of the fibers is described
using slender-body theory, and the line distribution of point forces along their lengths is
approximated by a Legendre polynomial in which only the total force, torque, and particle stresslet
are retained. Periodic boundary conditions are used to simulate an infinite suspension, and both
far-field hydrodynamic interactions and short-range lubrication forces are considered in all
simulations. The calculation of the hydrodynamic interactions, which is typically the bottleneck for
large systems with periodic boundary conditions, is accelerated using a smooth particle-mesh Ewald
(SPMBE) algorithm previously used in molecular dynamics simulations. In SPME the slowly
decaying Green'’s function is split into two fast-converging sums: the first involves the distribution
of point forces and accounts for the singular short-range part of the interactions, while the second
is expressed in terms of the Fourier transform of the force distribution and accounts for the smooth
and long-range part. Because of its smoothness, the second sum can be computed efficiently on an
underlying grid using the fast Fourier transform algorithm, resulting in a significant speed-up of the
calculations. Systems of up to 512 fibers were simulated on a single-processor workstation,
providing a different insight into the formation, structure, and dynamics of the inhomogeneities that
occur in sedimenting fiber suspensions2@5 American Institute of Physics
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I. INTRODUCTION namic diffusivities do not depend on the size of the
container’ This raises the question of whether an initially
Sedimentation of small particles in a fluid occurs in arandom suspension remains so during sedimentation. Several
very wide range of both natural phenomena and industriginterpretations have been proposed, including a screening
processes: sedimentation in a river, pollution in the atmomechanism for the velocity disturbance of the partiéles.
sphere, waste processing, or the production of composite M@ore recent investigatiois™ suggest that the presence of
terials are all instances in which particle settling plays a cengontainer walls and of a small stratification in the suspension
tral role. While being one of the simplest hydrodynamic . agte a decay of the velocity fluctuations.
particulate flows, it also remains one of the least well under- The sedimentation of nonspherical particles such as fi-

stoad, and has been the subject of numerous expenmentgérs is at least as complicated. Experiments demonstrate a

and 'Fheoreucal |nvest-|gat|ons.. Batche]ioworklng on the concentration instability, by which an initially homogeneous

premise of homogeneity and diluteness, was the firstto cal;. , .~ . . . " )

. ) ) distribution of fibers can become highly inhomogeneous:

culate the correction to the sedimentation speed of non:. . -

. . Co . . high-concentration streamers made of distinct clusters tend
Brownian spheres in an infinite fluid. His result was con-

firmed by otheré although it appears that the functional ©© form, surrounded by clarified regions. This clustering has
a strong effect on the sedimentation speed, which is en-

dependence of the hindered settling velocity depends on ﬂ‘h din the dil . d b | han th
statistical structure of the suspensfohater, Caflish and "anc€ In the dilute regime and can ecgmes arger than the
maximum possible value for an isolated fib&?> This con-

Luke® demonstrated that the average velocity in an infinite S - ° ) )
suspension has litle meaning since the variance is yrentration instability was predicted theoretically by the linear
bounded, growing like the linear dimension of the sedimentStability analysis of Koch and Shaqféﬁ,wmch demon-
ing system. This prediction is contradicted by experiments,Str_ated that.such e.lclustlermg for suspensions of nons.phencal
which suggest that the velocity fluctuations and hydrody-2Xisymmetric particles is a consequence of a coupling be-
tween the mean flow fluctuations and the anisotropic mobil-
JAuthor to whom correspondence should be addressed. Electronic mailty of the part_lcles. Their !lnear gnaly5|s, hqwever’ predicted
darve@stanford.edu that the density perturbations with the maximum growth rate
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are those of arbitrarily large wavelength, and hence was natere inspired by existing algorithms used in molecular dy-
able to provide any information on the wavenumber selecnamics simulations, where the electrostatic potentials have
tion observed in the experiments. Thus, this process is yet tthe same slow decay as the disturbance velocity in creeping
be elucidated. flow. Sangani and MB developed arO(N) fast-multipole
Several attempts have been made to numerically simunethod for hydrodynamic interactions, based on the famous
late this instability. Mackaplow and Shaqgféhperformed algorithm by Greengard and Rokhfifhiin the fast-multipole
both Monte Carlo simulations and point-particle dynamicmethod the simulation domain is decomposed into a tree of
simulations, and managed to capture most of the qualitativeells, and in each cell a compressed representation of the
features of the instability in the dilute regime: formation of flow disturbances is constructed using a truncated multipole
streamers with increased sedimentation velocity and alignexpansion. Far-field interactions with the particles located in
ment of the fibers with gravity with occasional flipping. distant cells are then calculated by means of this compressed
Their simulations predicted the correct form of the steady+representation. The fast-multipole method was also applied
state orientation distribution, but generally overestimated thenore recently to suspensions of many deformable dfops
mean sedimentation speed. This discrepancy was attributexhd to Stokesian dynamics simulations with finite numbers
to the influence of the dimensions of their periodic unit cell, of particlesﬁ2 Another efficient method was also developed
and to the absence of lubrication or contact forces in theiby Ladd” and is based on a discretized Boltzmann equation
simulation method, where the latter would have the effect ofor the fluid phase; this technique, however, only applies to
limiting cluster densification. Their study did not provide any finite Reynolds numbers.
quantitative results on the velocity distributions, pair distri- The most notable method for both electrostatic and hy-
butions, or on the influence of the effective particle volumedrodynamic interactions is the so-called particle-particle
fraction nl®. particle-mesh(PPPM algorithm.24 This algorithm and its
Butler and Shaqféﬁ performed more sophisticated many variants have been used for over a decade in plasma
simulations in which they accounted for both far-field hydro-simulations, astrophysics, and molecular dynamics, and are
dynamic interactions and short-range lubrication forces. Thdased on a decomposition of the interactions into two fast-
fibers were no longer approximated as point particles, butonverging contributions, one of which is efficiently evalu-
modeled using slender-body theory as line distributions ofited using an underlying grid and the fast Fourier transform
point forces. A spectral approximation of the line distribu- algorithm. A good choice of parameters allows one to reduce
tions was used, in which they retained the first two momentsthe cost of evaluating the interactions@N In N), which is
namely, the total force and dipole term, whose antisymmetri@ significant improvement for large systems. A thorough re-
and symmetric parts are the total torque and particle stresslatiew of different variants of the method for electrostatic in-
Short-range pairwise interactions were also included usingeractions can be found in Deserno and HéMm.
the lubrication approximation. The results they obtained A version of the PPPM algorithm, called particle-mesh
were dependent on the aspect ratio of their periodic simulaEwald (PME), was first applied to hydrodynamic interactions
tion box, but good orientation and velocity statistics werebetween suspended spheres by Gutkeind was subse-
obtained using boxes that were highly elongated in the direcguently systematized by Sierou and Brédin their acceler-
tion of gravity. The size of the systems they were able toated Stokesian dynami¢8SD). ASD is a new version of the
simulate was, however, greatly limited by the cost of evalu-Stokesian dynamics methé8lin which the direct calculation
ating the interparticle long-range hydrodynamic interactionspf the far-field grand mobility matrices is replaced by the use
so that only very few clusters were typically observed inof the PME algorithm along with an iterative solver for the
their simulations. Moreover the size of the clusters was inmatrix inversion. ASD was proven to be very efficient in
fluenced by the boundary conditions. In particular, the limi-evaluating the rheological properties of suspensions of
tations on the box aspect ratio and number of fibers did no$phere§,9 allowing one to simulate systems of up to 1000
allow them to observe more than one streamer in the horispheres.
zontal direction. To reduce the influence of the boundary In this paper we are implementing a variant of the PME
conditions, and study in more details the structure of thealgorithm, called smooth particle-mesh Ewa®PMB), and
suspensiotte.g., wavenumber selection, cluster size, and dybased on the work by Essmat al® for electrostatic inter-
namicg, larger systems need to be simulated: this can onlactions. The main advantage of SPME over the original PME
be achieved using efficient algorithms to evaluate the longmethod is the improved accuracy resulting from the new
range interactions. force assignment and interpolation schemes used for the
In the Stokes flow regime, the disturbance of a pointFourier sum, which are based on an approximation of struc-
force or Stokeslet on the flow decays as the inverse of theure factors using high-ordé-splines. The common points
distance from the force location, so that even distant particleand differences with accelerated Stokesian dynamics will be-
pairs can have significant interactions. Evaluating the distureome apparent in the subsequent discussion. Section Il gives
bance velocity at each particle location due to the presencan overview of the mathematical formulation of the sedimen-
and motion of the other particles is typically &(N?) op- tation problem: the equations for the motion of the fibers,
eration, whereN is the number of particles, and can becomelubrication forces, and hydrodynamic interactions are all pre-
very prohibitive when the size of the system increases. Sewsented in detail. We then proceed to explain the smooth
eral alternate methods for the summation of the interactionparticle-mesh Ewald algorithm in Sec. I, and assess its per-
have been suggested in the last few years, most of whicformance by comparing it to the standard Ewald summation
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technique. In Sec. IV we discuss the iterative method and 3 1 ) 31n(2A)
preconditioning techniques used to solve for the stressletB« = §(| “Pa® Pa)f SUg(Xq + SPa)dS— 8y Pa X Ty
and lubrication forces. Finally the results of the simulations -t

are given in Sec. V, where the structure of the suspension, 3
orientation, and velocity statistics are discussed in turn, an
we conclude in Sec. VI.

g\le have introduced the total force and torque on filer

1 1
Fazf fds, Tazf p, X sf,ds.

-1 -1

Il. MATHEMATICAL FORMULATION GivenF,,T,, and the fluid velocityu/, along the axis due to

The simulation method follows the previous work by the motion of the other fibers, Eq2) and(3) can be used to
Butler and Shagfelf Slender-body theory is used to model Intégrate the motion of the fiber in time.
the motion of the fibers, along with a spectral approximation i
of the force distribution in which the total force, torque, and B. Forces and torques on the fibers
particle stresslet are retained. The fundamental periodic so- In addition to the long-range hydrodynamic interactions
lution of the Stokes equation is used for the hydrodynamiavhich will be discussed in the following section, the forces
interactions, and short-range interactions are calculated usinghd torques on the fibers can come from three contributions:
the lubrication approximation. For more details and discusgravity which causes sedimentation, lubrication forces when

sion the reader is referred to the original paper. two fibers get close to each othéypically when the dis-
. . tance between their surfaces falls below one fiber diarneter
A. Motion of the fibers: Slender-body theory and strong repulsive contact forces when this distance be-

The position and orientation of each fiheris given by ~ COMes of the order of the roughness length scale of the fiber
the location of its center of mass, and a unit vectomp surfaces. Gravity poses no special difficulty and only creates
parallel to its major axis. The time evolution &f andp, & force at the center of mass of the particle:
can be tracked using Batchelor’s slender-body théory, — FS=vApg, TS=0.
which represents the disturbance due to the presence and i ]
motion of the fiber in the fluid by a line distribution of point The slender-body formulation of Sec. Il A, which repre-
forces or Stokeslets. To a leading order approximation irP€nts the fibers as line distributions of point forces, is a far-
In(2A) whereA is the fiber aspect ratio, the translational andfi€ld approximation and therefore does not capture the near-

rotational velocities, andp,, are related to the fluid distur- fi€ld effects which are dependent on the exact geometry of
bance velocity and force distribution along the fiber by the fiber surfaces. These effects can be accounted for through

additional lubrication forces, as is commonly done in Stoke-
In(2A) sian dynamics simulatiorf§. As sedimenting fiber suspen-
4 (4P ®pa)fals). (1) sions are known to form inhomogeneities, correctly captur-
ing these short-range interactions can be critical, and indeed
whereu!, is the disturbance velocity of the fluid surrounding Butler and Shagfefl observed that including lubrication
fiber & due to the motion of the other fibersjs an abscissa forces in their simulations modified the sedimentation rates
along the fiber length, anfj, is the line distribution of point and pair probabilities. The modeling is quite straightforward
forces. Equatior{l) has been nondimensionalized using theand is derived from the formulas of Claeys and Bradyour
following characteristic velocity, length, and time scales:  types of lubrication interactions can occur: body-body inter-
actions (parallel and nonparallel cagesnd-body interac-
4arpl? tions, and end-end interactions. In each case the explicit form
gVAp In(2A)’ of the lubrication force will differ, and the various formulas
can be found in the work by Butler and Shaqfétor the
whereV and Ap are the volume and relative density of a most general case where the fibers interact along their

fiber, w is the viscosity of the solvent, arglis the accelera- |engths and are nonparallel, the force between two fibers
tion of gravity. The characteristic length scdlés the fiber  andg is given by
half-length, so that positiorsalong the fibers range from -1 )
to +1. The characteristic time scale, or Stokes time, is the Lo 67h n
time required for an isolated vertical fiber to sediment over = = Afp,, ¥ pglh
its half-length.
Integrating Eq.(1) along the fiber axis gives an expres-

sion for the translational velocity,

).(a + Spa - u:y(xa + spa) =

VA
U= 22Pn2A), 1=l to=IJu=
Al

wheren is a unit vector normal to both fiber surfacégs the
minimum separation distance between the two surfaces, and

h is the relative velocity projected along The appropriate
. 1t , In(2A) sign is chosen such that the force is repulsive for approach-
Xo= 5 | Ug(Xy+sp,)ds+ (I+p,®@p)Fs, (2 . ; , N,
2)4 8m ing fibers(h>0) and attractive for separating fibefls<0).
In all cases these lubrication forces also create a torque.
while multiplying Eq.(1) with s, integrating, and taking two As argued by Harlen, Sundararajakumar, and Rdat

cross products witlp,, yields the rotational velocity their similar simulations of neutrally buoyant fibers, lubrica-
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tion interactions between high-aspect ratio particles are quit&his was the approach adopted by Mackaplow and Shéﬁfeh
weak and will usually not be sufficient to prevent mechanicalin their Monte Carlo simulations. This method, however, is
contact. Harleret al. treated these contacts by solving a con-very expensive asN +5 unknowns must be solved per fiber,
straint problem and determining exactly the normal reactiorwhereM is the number of discretization points and can be of
forces that prevent fiber crossing. An alternate approach corthe order of 10.
sists in adding strong and very short-range repulsive forces A more tractable approach was suggested by Harlen
that act at the same points and in the same directions as tfe¢ al,>® and used successfully by Butler and Shadfett.
lubrication forces® consists in expanding the force distribution in a Legendre
_h polynomial and retaining only the first two moments:

FR.= +a———n
ap™ F807

1(* 3s (*
The values of the parameteagand ~ used in the simulations fo(s) = Ef f (s)ds+ —f sf,(s)ds.
-1 -1

are 1x 10 and 1x 10°, respectively, and are chosen such 2

that the repulsive force remains small over most of the range

of the lubrication force; the actual values are typically shownObserving thaff ,=(p,-f,)p.,—P. X (p,Xf,) and using the
to have little impact on the simulation resulfs® projection of Eq(3) alongp,, allows to rewrite the linearized

force distribution as
C. Hydrodynamic interactions

The hydrodynamic interactions are accounted for 1 3s
through the disturbance velocity, in Egs.(2) and(3). Since fa(s) = EFan E(Ta X PatSaPa)s (6)
the fibers are approximated as line distributions of point

forces, the disturbance velocity is given by ) ] o
whereS,, is the particle stresslet, which is a scalar due to the

! one dimensionality of the fibers:

N
u,(xa+sapa) = 2 ‘](Xa+sapa_xﬁ
p=1J-1

2 1
~ SpPp)f (Sp)dSs, (4) S,=- ﬁ sp,, - u'ds. 7)
whereJ is the Green’s function, or fundamental solution of 1

the Stokes equation. For a finite number of point fordeis,

the Stokeslet, or Oseen—Burgers tenkor This method is analogous in essence to that used by Claeys
and Brady in their Stokesian dynamics simulations of prolate
K(x) = i<1 +2 @;X>, spheroids® although the path followed is different. Instead
8m\r r of using a spectral expansion of the force distribution as in

wherer =|x|. However, when the suspension is infinite, sum-our case, Stokesian dynamics is based on a multipole expan-

ming an infinite number of Stokeslets becomes intractabl§!©n Of the Green's function into centered moments, which is
and convergence is not guaranté&dhis issue can be cir- YPically truncated after the dipole term. Claeys and Brady
cumvented by using a periodic suspension obtained by regl€n argue that in the case of spheroids the multipole mo-
licating a unit cell in all three space dimensions. In the casén€Nts are equivalent to distributed singularities along the
of a periodic distribution of point forces an exact solutiop ~ '0¢@l axis of the particles. The equations they obtain are
was derived by Hasimot¥. The details of the Hasimoto so- slightly more general as they also involve distributions of
lution are given in Sec. Ill along with a discussion on the Potential dipoles and their derivatives, which arise from the
method used to calculate it. Hence for a periodic suspensioff?ite thickness of the particles but become negligible for

high-aspect ratios.
J(Xuz + SePa~ XB - Sﬁpﬁ)

_ Ko(Xo+ 8Py = Xg—SgPp) If a# B, 5)
Kp(Sy=Sp) —K(s,—sp) if a=p. Substituting the linearized force, E@), into the expres-
sion for the disturbance velocity, E¢4), and then Eq(4)
When a=p, the Oseen—Burgers tensor must be subtracteghig the equations for the motion of the fibers, E(®.and
from thg penqchc sol'utlon so that the disturbance veIOC|ty(3), yields a general expression for the translational and ro-
due to fibera is not included. Wherw=p ands,=ss the  (ational velocities as functions of the gravity fore& (which
limit of K(s,~sg)~K(s,~sp) is used. is the same for all fibeysthe stresslets, and the lubrica-
tion forcesF-, where the index=1,...,M refers to a spe-
cific lubrication interaction between two fibers. It can be
The system of equations, as presented in the precediriyritten in the general form
sections, is an integral system for the force distribufig(s)

E. Method of solution

D. Linearization of the force distribution

along each fiber. In a method similar to the boundary in- N M
tegral method, one may choose to discretize the fibers and % =7 [LaﬁFG+ M ,5S5] + > Ny FF, (8)
solve for the value of, at each of the discretization points. B=1 =1
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N M
Po= 2 [PagFC+QupSsl+ 2 RuFF. 9
B=1 =1

For a given pair(a,f),L,5,Nu,P.p andR, are second-
order tensors, andl ,; andQ ,; are vectorgsince the stress-
lets are scalar quantitigs

The tensord. ,; andP,; give contribution to the veloci-
ties due to gravity, and can be shown to be

In(2A)

——(I1+p,®p,),
877( Po® Pa)

1 1
Log= 2 f f_l K (S, Sp)ds,ds; + 3,4

3 1
Paﬁ = Z(I + pa ® pa) f f—l K(Sa,Sﬁ)SadSadSﬁ,

where in each cas&(s,,Sg) stands forK(x,+s,p,~Xg
—SgPpp) and takes the form given in E(B). The vectorsv 4
andQ,; used to relate the fiber stressléigto the velocities
are also easily obtained:

3 1
M B = Z J f_l K(smsﬁ)pﬁsﬁdsadsﬁ’

9 1
Qup= Z(| +P.® P J f_l K (S Sp)P sS0SpdS,dSs.

The two remaining tensod,, andR,, give the contri-
bution of lubrication forces to the velocity, which is of two

Phys. Fluids 17, 033301 (2005)

RDA:_
4

3 1
(l - puz ® pa)lf J K(Smsﬁ)[l + 3)\Iasa(| - pa
-1
1
® pa)ldss.ds, - f J K (S Sp)l! + 3\ pSu(l = Py
-1

In(2A) BM} |
2

® pb)]dSJSadSa +

The repulsive contact forces, which are not included in the
above equations, are treated in exactly the same way as the
lubrication forces.

The method of solution proceeds as follows. In E@S.
and(9) the tensord. ,5,N,,P,5 andR, and vectorsVl .z
andQ,z are only functions of the positions and orientations
of the fibers and are hence known. The gravitational féf¢e
and the repulsive forceB? are also known, so that the un-
knowns are the translational and rotational velocikgsnd
p.. of the fibers, as well as the stressléisand lubrication
forcest'. The first step consists in solving for the latter two
in the following manner. Substituting the linearized force
distribution [Eq. (6)] (where the total force and torque are
functions of the lubrication interactions and stresslets which
are unknown into the disturbance velocity, E@4), and in
turn substituting Eq(4) into the definition of the stresslets,
Eq. (7), yields a linear system for the stresslets and magni-
tudes of the lubrication forces. Once this system is inverted,
using an iterative solver discussed in Sec. IV, E§sand(9)
can be used to obtain the velocities of the fibers. The posi-
tions of the fibers can then be advanced using a fourth-order
Runge—Kutta time-marching method. The time step is chosen
S0 as to avoid collisions or fiber overlap, and so that no fiber
moves by more than half a fiber diameter at each step. For a

types: a dlre_ct contribution, through the _se(?ond term_on th?nore extensive discussion on the time integration method,
right-hand sides of Eq$2) and(3) and an indirect contribu- the reader is referred to Butler and Shaq]f%h

tion through the disturbance velocity. This second contribu-
tion is a multibody interaction in the sense that each lubrica-

tion force affects all the fibers. Given a lubrication

interaction! (1<I<M), let a and b be the two fibers be- Ill. THE SMOOTH PARTICLE-MESH EWALD
tween which the interaction takes place, andNgtand),, =~ ALGORITHM

be the corresponding abscissas where the force is applied. A{ periodic fundamental solution and Ewald

Fi is the force on fibem, the force on fibeb will be -F|.  summation formula

Introduce the two matrices ) ,
The disturbance velocity E¢4) must be evaluated along

each fiber. In practical simulations the integrals over the
lengths of the fibers are computed numerically using Gauss—
Legendre quadrature, so that we are left with calculating the
disturbance field created by a distribution of point forces at
each point force location. Consider a distributionNopoint
forcesF,,F,,...,Fy at positionsxy,X,,...,Xy in a unit cell

of volume 7y; to alleviate the notations, assume that the
quadrature weights resulting from the discretization of the
integrals have been included in the force vecteysDenote

by g, i=1, 2, 3, the lattice vectors forming the edges of the
unit cell. To simulate an infinite suspension we use periodic
boundary conditions, so that each point fofgeat position

X, has periodic images at all the locatiorg+p;a;+p,a,
+psa; for all integerspy, p,, p3. With these notations, the
disturbance velocity at locatiom,, created by the point
forces other thark, is written as

Aal = 50(& - 5ab!
Bu = Saalia = Sabhib-
The two tensordl,,, andR , then take on the following form:
1 l
Nal = Z f f K(Salsﬁ)[l + 3)\Iasa(| ~Pa® pa)]dsadsa
-1

1 l
~2 J J K (S Sp)[1 + 3\ pSp(1 = pp ® pp)Jds,ds,
-1

N In(2A)

— (I + A
S ( pa®pa) al
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N the integral of a cutoff parametes; called Ewald coefficient.
UXm) = > 2 K(Xp=Xm+P)F, m=1,...,N,  (10)  The derivation is classi&®**"*®and is not repeated here.
p n=l The final result expresses the disturbance velocity as follows:

whereK is the Oseen—Burgers tensor. The term correspond- N

ing to n=m andp=0 is omitted in the sum. Because of the  u(X;) = > > A(a, Xy~ X, + P)F,

decay of the Oseen—Burgers tensor as fhle infinite sum in p n=1

Eq. (10) is generally divergent. This is typically remedied by o rikox - _

realizing that the average ford€)+ 0 creates a backflow, * goe "Blak)Fk), m=1...N. (14
and that only the velocity relative to this backflow has a

physical significancé®*® Hasimotd” took advantage of the The two tensors\ andB are given by

spatial periodicity of the problem and used Fourier series to 2

T T’ 2 _
derive a convergent expression for E40). His solution can Ala,x) = aT/z¢1/2<7)(f2| +X®X) - i€ e
be written as

1 2
U(xp) = —[S'= V(V - )], (11) B(ak) = gy (mak®) (K — k ® k),
¥y 70
whereS* and S? are the following sums: where the functiong, are incompletey functions:
1 2k Xm | e* 1 - e
P2=- F(k), (x) = — + ——erfa(\x), (¥) = —5(1+x).
o= go ” (k) 112 < o é1 2
| e2mik X _ The Ewald coefficientr is a user-defined parameter that
S =V$s= . > 2 F(k). (12 determines the relative importance of the two sums: its
0 k%0

choice is typically dictated by cost considerations. The two

The vectorsk are the reciprocal lattice unit vectors:  tensorsA and B decay exponentially im?=|x|* and k?
=kyb,+kob,+ksbs, where the vectors;, i=1, 2, 3, define the  =|K|, respectively, so that both sums in EG4) converge

unit cell in the reciprocal or Fourier space: rapidly.
— X a3 — X3 - X 3 B. Description of the algorithm
! T ? T ° 70

The Ewald summation formula E@L4) is the basis for
F(k) is the Fourier transform of the distribution of point Most simulations with periodic boundary conditions. A stan-
forces, or structure factor: dard and widely used method, sometimes called Ewald sum-
mation technique, consists in truncating both sums after a
few terms and choosing the coefficiemtso as to minimize
the overall cost’*83¢In spite of the rapid convergence of
the sums, this direct method can still be quite expensive for
The presence of this structure factor in the periodic fundavery large systems. Also, it does not typically exploit the
mental solution suggests that the disturbance velocity coul@resence of the Fourier transform in the second sum. The
be evaluated using the fast Fourier transform algorithm; thismooth particle-mesh Ewald method proceeds quite differ-
observation will be exploited below. It is important to note ently: the parametes is chosen so as to reduce the cost of
the absence of the terk=0 in the Fourier representation of the first sum(or real sum), and a fast algorithm based on the
the velocity: this term corresponds to the mean backflowast Fourier transform on a Cartesian grid is used for the

alluded to above and should be set to zero if the fluid issecond sun{or Fourier sum More details are provided in
globally quiescent. The absence of this term arises naturalljhe next sections.

in the derivation of Eq(11), where it is shown that the mean

pressure gradient cancels exactly the mean force fe(ﬂh 1 Real sum
so that the latter does not contribute to the disturbancé’
velocity.37 The calculation of the real sum at all the point force
Equations(11) and (12) constitute an exact and abso- locationsx,, is a priori an O(N?) operation as it involves
lutely convergent expression for the disturbance velocity, andumming over all the other point forces and their images.
can be used as such in computations. However, the relativellowever, the exponential decay of the tendocan be ex-
slow decay in 1k?> makes this direct method quite inefficient ploited to restrict the evaluation of the sum to close particle
as many terms are needed to achieve a reasonable accurgggirs. Given a tolerance and a cutoff radius,, the Ewald
The convergence can be accelerated by recasting (Efjs. coefficienta can be chosen to make all the coefficients of
and(12) into a slightly different form called Ewald summa- A(a,X) less thane whenever|x|=r.. Once « is obtained
tion formula. It was first used by Ewald for electrostatic following this procedure, the real sum in E44) only needs
interactions’’ and the present form for hydrodynamic inter- to be performed over the point forces located within a sphere
actions is due to Hasimotd.The starting point is an integral of radiusr, i.e., over a small number independent of the
representation for k™ for m=1, 2, and the introduction in system size. The evaluation of the sum at all the point force

N
F(k) = >, Femkxn, (13)
n=1
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locationsx,, then has arD(N) cost, with a constant of pro- computing the Fourier sum using the previous algorithm is
portionality that can be adjusted through the cutoff radius. limited by the two fast Fourier transforms, which have a cost
of O(K In K) whereK is the number of points in each direc-
2. Fourier sum tion on th_e Cartesian mesh, and is chosen proportional to the
o ] ] ) ~ system sizeN. Therefore the total cost of the method scales
The real gain is achieved in the evaluation of the Fourieryg N |n N, which can be a significant improvement for large
sum. As mentioned previously, the presence of the structurgyst(:)mS compared to the original cost@fN?). Compari-
factors suggests use of the fast Fourier transform algorithmy,ns of the CPU times for the traditional Ewald summation

As the point forces can be located anywhere inside the Unichnique and the smooth particle-mesh Ewald algorithm are
cell, prior interpolation to a Cartesian grid is necessary. Th'%resented in Sec. Il D.

can be done formally using CardinBtsplines, which are The use of the Cardina-splines for the force assign-
introduced briefly in the Appendix. A mesh is defined insideent and interpolation schemes is the major difference be-
the reciprocal unit cell by choosing three integkisKa, and  tyeen SPME and the accelerated Stokesian dynamics
Ks corresponding to the numbers of points along the recipmethod of Sierou and Brady.Accelerated Stokesian dy-
rocal lattice vector®y, by, andbs. Given a poink inthe unit  h5mics uses a Taylor series expansion to assign the forces to
cell, we define its scaled fractional coordinates By ihe grid, after which it applies the fast Fourier transform
=Kib;-x fori=1, 2, 3. ) algorithm; Lagrange interpolation is then used to go back
We wish to approximate the structure fackdk) using a  from the grid to the particle locations. Exploiting instead the
discrete Fourier transform on the grid defined above. This iﬁqterpolation properties of Cardind-splines for complex
achieved by interpolating the complex exponentials in thesxponentials gives directly a smooth approximation to the
definition of F(k) using CardinalB-splines. The Appendix structure factor8)“° which are the relevant quantities ap-
shows that in one dimension we have pearing in the Fourier sum of the Ewald summation formula.
oo The final interpolation is done again usiBgsplines and is
exp(Zwik—g) ~b(k) D M (&~ m)exp<2wi k_m) (15) complete_ly analogous to j[he force assignment, as it _should be
K oo K considering the symmetric nature of the two operations. An-
other advantage of using-splines is their smooth behavior
at high interpolation order, while Lagrange interpolation is
known to become unstable as the order increases. Essmann

sum overm s in fact limited top terms as the functionl, & 513 compared both methods for electrostatic interactions,
have compact support. Generalizing EIp) to three dimen-  onq gptained better accuracies usBgplines for both the
sions we obtain the following approximation for the structures, o and interaction energies.

factor:

where the coefficients(k) andM, can be computed using a
recursive definitionp is the order of interpolation, and the

F(K) = by(ky)by(k)ba(ka) F(Q) (K), (16 ~© Aceuracy

The accuracy and efficiency of the method depend on
several parameters: the tolerancand cutoff radius . for
the real sum(the two of which uniquely define the Ewald

where F(Q) is the three-dimensional discrete Fourier trans-
form of the following arrayQ(m):

N coefficienta, as explained in Sec. Il B)1and the number of
QM= X FMy(&-my+pK)M(&-m, grid pointsK and the ordep of the B-spline interpolation for
n=1pg,p2.P3 the evaluation of the Fourier sum. These parameters are typi-
+ pZKZ)Mp(gg— mg + psKs). (17) cally adjusted to maximize the accuracy while minimizing
the cost.

The algorithm for the computation of the Fourier sum 14 jnyestigate the accuracy of the method and the influ-
can now be summarized. The first step is the assignment Qfce of the parameters in more detail, tests are performed in
the point forcesF, to the Cartesian grid using Cardinal 5 square box with a distribution of 100 point forces at ran-
B—sphnesz i.e., the calculation of the_ arrg(m) using the  gom locations, with random orientations and unit strengths.
interpolation formula Eq(17). The discrete Fourier trans- |, g the tests, the value of the real-space tolerance is set to
form F(Q) is then computed using the fast Fourier transform - 1310 The disturbance velocity at the force locations is
algorithm (FFT), and is multiplied in turn byoi(k) to yield  computed using the smooth particle-mesh Ewald method,
the approximation to the structure factor E46), and by the 414 is compared to the solution obtained with converged
Fourier convolution kerneB(a,k). The result is multiplied  Eywald sums. The measure of accuracy used here is the root-

by by (k;) (where * denotes the complex conjugatnd the  ean squarérms) error between the two solutions:
inverse FFT is applied, yielding the Fourier sum in Etyd)

but evaluated at the grid points. The sum can then be inter-

polated from the grid points to the particle locations, again ~ AU= Na[USPME(Xn) — UEWALD(x ) T2

using B-splines[transpose operation of the force assignment "

Eq. (17)]. Since our method is based on evaluation of sums such as Eq.
As we explained above, the real sum need only be pert4) which only involve point force distributions, we limit our

formed on a small number of neighbors for each point forceattention to this measure of accuracy. It should be noted,

resulting in anO(N) cost for N point forces. The cost of however, that such a measure does not guarantee that other

N 1/2
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FIG. 1. Velocity rms error as a function of the cutoff radiys The three P ¢ fo=40,K=32
curves correspond to the three different grid sikes32, 64, and 128 for the 100 %
evaluation of the Fourier sum. °
5 102
)
E 10-4.
Z
quantities such as higher force moments are as adequately § 106
captured. 2
The rms error as a function of the cutoff radius at con- 1084
stant values oK andp is plotted in Fig. 1. The three curves o (b)
1 -1

correspond to the three grid sizks32, 64, and 128. In all
cases the rms error becomes large as 0, but decays very
rapidly whenr increases; for large values of, it reaches a
plateau at aroundu=107°. These curves are easily inter- FIG. 2. Velocity rms error as a function ¢ the number of grid pointi
preted. Whatever the value of the cutoff radius, the error m,lsed for the eva}luation of the Fourier sum dhglthe interpolation ordep
the real sum is of ordee and accounts for the plateau at of the force assignment scheme.
around 10°% indeed the Ewald coefficient is chosen precisely
so as to make the real sum converge withifThe remainder
of the error(i.e., all the values above the platéatems from
the evaluation of the structure factor using the discrete Fou- The efficiency of the method is assessed by comparing
rier transform, and from the assignment of the point forces tdhe CPU times required by the traditional Ewald summation
the grid and back. The Fourier sum accounts for the smoottechnique and our smooth particle-mesh Ewald algorithm.
and long-range part of the solution and cannot capture théhese are shown in Fig. 3, where simulations were per-
short-range singular part; this explains why for a given numformed for the same systems as in the preceding section
ber of grid pointskK the error increases rapidly when the (unit-strength forces with random locations and orientafions
cutoff and hence the Ewald coefficient become small. for different system sizeBl and levels of accuracy. A quick
The influence ofK and p on the accuracy is shown in observation of Fig. 3 suffices to show the superiority of the

Fig. 2. As already suggested in Fig. 1, increasing the numbe‘?‘PNIE method in terms of efficiency. Except for very small

of points for the fast Fourier transform improves the accySYStems, the CPU times are all smaller for SPME than for the
Ewald sums at a given accuracy. In fact, even the high-

racy Of. th? Foungr sum: Fig.(@) shows th? decay_ of the accuracy SPME is more advantageous than the low-accuracy
error with increasing at constant cutoff radius and interpo- Ewald sums. It becomes even more so for large systems: at
lation order. On a log-log plot the curves are essentiallythe same level of accuradyoot-mean square error of the
straight, suggesting an algebraic decay; the exponents oBiqer of 109), SPME is about 40 times faster than the Ewald
tained from the curves in Fig(@ are, respectively, =6.7 and q,ms for 1000 point forces and 300 times faster for 5000
-8.5 and are close to the value of the interpolation omer ,ints forces. While the cost scales quadratically with size
confirming the scaling of the error witk™ for the B-spline oy the Ewald sums, it increases almost linearly with SPME
interpolation®“® Another way of making the Fourier sum hen the grid size is fixed in Fourier spake three curves
more accurate is to choose a higher order of interpolation fofor SPME correspond to three different grid resolutions in
the force assignment scheme, and is illustrated in Figl. 2 Fourier space

IncreasingK or p has the same effect on the accuracy, so that It must still be noted that the CPU times of Fig. 3 are for
either one or both can be done and the final decision dependise calculation of the disturbance velocity only. To assess the
on the computational expense. actual cost of our simulations, we should also take into ac-

1 2 3 4 5 6 7 8 9
Interpolation order p

D. Efficiency
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200 TABLE I. Dependence of the condition number on the inhomogeneity of the
(a) —e— Ewald sums, rms = 10 suspension and on the presence of lubrication interactions. The results are
----- o---- Ewald sums, rms = 10° for 200 fibers, A=11,nl3=0.1, and a box of aspect ratiy:d,:d,=1:1:2.
150 - —-~— Ewald sums, rms =102/}
— Number of
2 Time t lubrication Condition
“E’ (Stokes units interactions number
= 100
=) 0 19 8
o
(3] 50 134 55
50 - 100 218 381
150 251 729
4
0 4 " T T
0 200 400 600 800 1000
System size N such as the generalized minimum resid@@MRES method
6 of Saad and Schult?, which applies to large nonsymmetric
(b) —e— SPME, rms = 10° linear systems. At each iteration of the solver, only one
5 w0 SPME, rms = 10°® matrix-vector multiplication is needed, so that this type of
—-+— SPME, rms = 10° method can be used in conjunction with SPRIE.
O R NIRRT S S S o gy | In SPME, the real sum in Eq10) is still computed
g directly, and is written as the multiplication of a matx
g 31 with a vector containing the point forces. The coefficients of
a, the matrix depend on the spatial configuration of the suspen-
sion, and therefore do not change from one solver iteration to
7. the next within a given time step. This seemingly benign
0000000000 observation allows one to precompute the real-space matrix
b.0.-0-0.-0-0--0::0-0:-0- 00 —y 1 X ;
0 e e A before applying GMRES, so that at each iteration of the
(] 200 400 600 800 1000 solver the real sum is simply obtained by a matrix-vector
System size N multiplication of a stored matrix with the current iterate. This

spares the expense of computing the real sum coefficients at
FIG. 3. CPU times for the calculation of the Ewald sums usﬂapthe each Step and reduces the time of the algorlthm by an order

traditional Ewald summation technique afil) the SPME method, as a . . . .
function of the system size. oI magnm:o_le, the only downside being the additional storage
O € matrix.

count the inversion of the linear system for the stresslets anB- Preconditioning

lubrication forces, which cannot be performed using standard  To benefit fully from the efficiency of the SPME
elimination procedures when SPME is used. The additionainethod, the number of iterations required by the solver to
cost of this system inversion does somewhat impede the pegchieve a reasonable convergence must be kept to a mini-
formance of SPME, but for large systems it still remains farmum. This number of iterations is a function of the condition
superior to the standard Ewald sums. A detailed diSCUSSiOﬁumber of the linear system, defined as the ratio of the |arg-

on the system inversion follows. est over the smallest eigenvalue. For our problem, the con-
dition number was shown not to increase significantly with
IV. THE ITERATIVE SOLVER the problem size at a given fiber concentration, but rather to
. depend on the spatial configuration of the fibers and on the
A. Generalities C . .
presence of lubrication forces: for very dense or inhomoge-

Solving for the particle stresslets and amplitudes of theneous suspensions with many lubrication interacti@ush
lubrication forces involves inverting a linear system. Thisas the ones that occur when the sedimenting fibers form clus-
operation, which in general can be quite costly, becometers, the linear system is typically quite stiff and a large
more complicated when the SPME method is used. Indeed inumber of iterations is required. This is illustrated in Table I,
SPME the coefficients in the Ewald summation formula Eg.which shows how the condition number increases over the
(10) are not computed directly, and the reciprocal sum in-course of a simulation as a result of the concentration insta-
stead is calculated as a whole using the fast Fourier trangility. Sangani and MY’ already encountered this issue with
form. In other words, the matrix that needs to be inverted igheir fast-multipole method, where they observed that the
not explicitly accessible: the SPME algorithm provides usinclusion of lubrication forces in their simulations of sedi-
with a “black box” that performs matrix-vector multiplica- menting spheres greatly decreased their convergence rates. A
tions in an efficient manner. Classical methods for invertingsimilar problem was reported in accelerated Stokesian dy-
linear systems such as the LU factorization used by Butlenamics simulation8’
and Shaqfelrff are therefore not applicable, and we must re-  The classic approach to accelerate convergence is the
sort to a different approach. An attractive method is the us@reconditioning of the system, which consists in multiplying
of an iterative solver to compute an approximate solutionjt by an approximate inverse of the original matrix. Numer-
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102 consists in calculating the diagonal of the matrix, which is
®  No preconditioner very dominant, and preconditioning the system by this diag-
10° # v Diagonal preconditioner . . .
% = Sparse matrix, 5.5 % full onal. This alor_we reducgs the hgmber of iterations by a factor
1024 % o Sparse matrix, 9.1 % full of 2 or 3, but is not quite sufficient for very inhomogeneous
5 g, ‘i&g 4 Sparse matrix, 12.5 % full systems. The next step consists in calculating a sparse ap-
% 10+ ‘% proximation of the matrix, trying to compute the terms of
@ o tg ‘% large magnitude. The relative importance of the different
nE: ] t§ ﬁg terms in the matrix depends on the configuration of the sus-
104 t % ‘% pension and cannot be known exac#ypriori, but a good
% L . . .
> 1 ‘% rule of thumb is to assume that the interactions between
109 ﬁ b Y close particles dominate. A sparse approximate matrix is
10 y}z ’; % therefore obtained by only computing the interactions be-
0 20 40 60 80 100 120 140 160 180 200 tween particles within a cutoff distanak, which is chosen

by trial and error to minimize the number of iterations while
keeping the cost of computing the approximate matrix small.
FIG. 4. Convergence of the GMRES solver depending on the precondiThis sparse matrix is then inverted, either exactly using LU
tioner, for an iphomogeneous system of 200 fibérs11,nl*=0.1, and a  factorization or approximately using incomplete LU factor-
box aspect ratio ofl:d,:d,=1:1:2. ization, and the inverse is used to precondition GMRES. A
good choice ofl; can reduce the number of iterations by an

hod ilali? . . . order of magnitude, and cut the total time for the system
ous methods are avaliabiesparse gpprowmatg INVETSe, N~ jhversion by a factor of 4 for a system of 200 fibers. Table Il
complete LU factorization, etc., which are typically very ef-

e : . gives more detalls on the efficiency of these preconditioners.
f|C|.ent for .Iargg sparse matrices. Our pmblem’. however, 'Slgn all cases the terms in the approximate matrix must be
qung atypical in a erV ways. .F'rSt the coefﬁuents c_)f thecalculated directly using Ewald summation; however, since
matrix are not kn_own if _SPME IS uged: applying any kind O,f the sparse matrix is only approximate the Ewald summation
p.recond|t.|oner. will require galculatlng some of these C_Oeﬁ!'need not be fully converged and the first few terms in the
cients using direct sqmmatlon of the E\_/vald sums, which 'Ssdums are typically sufficient to improve convergence.
an expensive operation as was established earlier. Second,
the matrix is full, whereas most preconditioners are designed
for the sparse systems arising in finite difference and finite/. SIMULATION RESULTS AND DISCUSSION
element codes. Finally, the matrix is relatively small, from a
) . _A. General remarks

few hundred to a few thousand rows and columns: unlike
most situations where iterative solvers are used, the limiting  This section presents some simulations results, all ob-
factor is not the system size but the difficulty of constructingtained on a single-processor workstation. We first show some
the matrix efficiently. comparisons with the Monte Carlo simulations of Macka-

In accelerated Stokesian dynamics Sierou and Bfady plow and Shagfe! for random dispersions. Mackaplow and
showed that using an incomplete Cholesky preconditioneShagfeh used slender-body theory combined with a boundary
greatly improved the efficiency of their solver. This method,integral formulation to compute the sedimentation rate of
however, is only valid for symmetric matrices, which is not fixed random arrays of fibers: comparing our results to theirs
the case of the system in our simulation method. Other preis therefore a good way of evaluating the consequences of
conditioning techniques were therefore investigated, and ththe force linearization described in Sec. Il D. Figure 5 shows
convergence rates are compared in Fig. 4. The first methosedimentation rates for random arrays of high-aspect ratio

Number of iterations

TABLE IlI. Efficiency of various preconditioning technigues for an inhomogeneous system of 200 fibers of
aspect raticA=11 atnl®=0.1 in a box of aspect ratid,:d,:d,=1:1:2. Wsing fuller and fuller matrix approxi-

mations decreases the number of GMRES iterations, but increases the overhead cost of computing the sparse
matrix. For this example, the optimal value for the cutoff distance is araignd.2.

CPU time Total CPU
Number of Number of to compute time to

Type of GMRES terms in the the sparse solve the

preconditioner iterations sparse matrix matrix (s) system(s)
No preconditioner 138 558
Diagonal preconditioner 56 45D.2 %) 12 242
Sparse matrixgd.=0.4 46 11 2375.5 % 12 232
Sparse matrixd.=0.8 26 18 4329.1 % 27 154
Sparse matrixd.=1.2 19 2526012.5 % 48 144
Sparse matrixd,=1.6 14 32047115.7 % 75 148
Sparse matrixd.=2.0 13 3858018.9 % 101 171
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FIG. 5. Sedimentation rates of fixed random arrays of fibers as a function of
the effective volume fractioml®, obtained with our simulation method
(open symbolsand by Mackaplow and ShagfdRef. 17 (full symbols.

The sedimentation rates are scaled by their value at infinite dilution. The
results were obtained by averaging over 20 random configuration360
fibers in a square unit cell. The error bars are 95% confidence intervals.

particles(A=100 as a function of the effective volume frac-
tion nI® (wheren is the particle number density ahds the
fiber half-length; the velocities are normalized by the ve-
locities at infinite dilution. Our method slightly overesti-
mates the sedimentation rates, but the agreement is within
error bars up tml®=1, which is quite remarkable as the force
linearization cannot be expected to perform well at high con-
centrations. Other differences between the two methods may
also contribute to the differences observed in the sedimenta-
tion rates: Mackaplow and Shagfeh retained an additional ) o ) i
. . . FIG. 6. Fiber distribution in the simulation box &t 0.0 (random homoge-
term in t_he Sle_nder'bOdy t_hec_)ry gsymptptlc exp_anS|on Eqneous distributiop t=60.0, and=120.0(left to right). The simulation is for
(1), but did not include lubrication interactions which should 512 fibers of aspect ratia=11 with an average concentrationmf=0.05.
become more and more important at high concentrationsthe box aspect ratio igy:dy:d,=1:1:8.
Given these differences, the agreement with our data shown
in Fig. 5 is quite good, and we can expect our method to

perform well in the dilute regime. _ _form concentrated streamers surrounded by clarified fluid.
The code was also benchmarked by comparison with thg,, 4qiusting the dimensions of the periodic unit cell, we

previous work of Butler and Shaq_ﬂéarfor small systems of \yere able to observe the formation of one to two or three

up to 128 fibers: the results obtained with our implementaseamers for the system sizes considered here. We study in

tion were in all respects similar, so that only larger simula-y,r the structure of the suspension in the vertical direction
tions of 512 fibers are discussed below. For ease of comparfinside a given streameand in the horizontal directiotfor-

son with the experimental results of Herzhaft andation of distinct streamers
Guazzelli*® all the simulations presented in the next sections
are for a fiber aspect ratio #=11 and an average effective g_syspension microstructure and cluster formation
volume fraction ofnl®=0.05. A systematic investigation of :
. . 1. Vertical structure

the effects of slenderness and volume fraction will be de-
ferred to a subsequent study. Figure 6 shows the evolution of the suspension for a

Unless otherwise mentioned, all the initial distributions simulation box of high-aspect rati@,:d,:d,=1:1:8). Ini-
were obtained by assigning the fibers to random positionsally small clusters of only a few fibers form at random
and with random orientations. In the event of two fibers in-locations in the simulation box. These clusters have an in-
tersecting, one of them was repositioned at another randorreased sedimentation rate and entrain the fluid around them,
location in the box. This ensured that the initial suspensionsreating a backflow in the other areas, and eventually con-
were homogeneous, as would be the case with a well-mixederge to form a streamer of high velocity. The correlation
suspension in an experiment. As already observed on smalletween the position of the streamers and the fluid velocity is
systems, the local concentration fluctuations inherentlywery obvious, as shown in Fig. 7. Because the fluid is glo-
present in such a random distribution cause the suspension bally quiescent, a relatively strong backflow exists outside
evolve towards very inhomogeneous states where the fibethe streamer, capable of carrying isolated fibers upwards.
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FIG. 8. Procedure for the systematic determination of cluster positions and
sizes. A density function of the vertical distribution of fibers is obtained by
dividing the box into bins and counting the fibers in each bin. Clusters are
defined as regions where the local particle volume fraction peaks above 1.3
times its average valuel® and always remains above 0.8 times the average
nl3. In the example shown, the procedure finds five clusters of sizes 52, 47,
30, 17, and 12 fibers.

the cluster are taken to be the locations on each side where it
decreases below 0.8 times the averade Integrating the
particle density function over the extent of the cluster then
provides an estimate of the number of fibers inside the clus-
ter. Quite obviously the values of the two thresholds could be
. _ . _ chosen differently: the values suggested here are such that
FIG. 7. Vertically averaged local number density (a) and fluid vertical ¢ () ,sters defined by this procedure correspond to what one
velocity (u, (b) for the simulation of Fig. 6. Positive values f,) corre- ) ! .
spond to downward velocities. The position of the streamer is where the twdVoUld d_efme to be clusters by simply looking at the
maxima occur. Note the negative velocitiggckflow) outside the streamer.  SUSpPeNSsION.
The procedure is easily programmed on a computer and
can be repeated at different times, allowing one to track the
As can be observed in Fig. 6, the streamers are not uneluster positions and to perform statistics on their numbers
form in the vertical direction, but composed of several dis-and sizes. Figure 9 shows the evolution in time of the num-
tinct clusters of various sizes. Because they have differertbers of large(>30 fiberg and small(<30 fiberg clusters in
sizes, they also have different sedimentation velocities, sthe simulation of Fig. 6. To remove the high-frequency noise
that their relative positions inside the streamers change: largeresent in the original data, the curves have been smoothed
clusters catch up with smaller ones, forming yet larger clusby convolution with a top-hat function of widtht=8 and
ters and so on. The clusters do not always contain the samanit area, which explains the noninteger values for the num-
fibers, as fibers constantly enter and leave the clusters as thbgrs of clusters. The early valuag tot=15 approximately
sediment. These interesting dynamics can be quantified usirege not very significant as the streamer is not properly
the following procedure, summarized in Fig. 8. A densityformed yet, and are therefore omitted on the graph. Both
function of the vertical positions of the fibers at a given timecurves initially present slow oscillations at nearly the same
can be computed by dividing the simulation box along thefrequency, where the peaks in the number of small clusters
vertical axis into equally sized bins and counting the numbercorrelate with the valleys in the number of large clusters and
of fibers in each bin: such a function presents peaks at theice versa. This observation has an easy interpretation and
locations of the clusters and valleys between them, and theonfirms the dynamics alluded to above: up to approximately
heights and breadths of the peaks are good indicators of the=100, there is a periodic build-up mechanism by which
cluster sizes. More precisely we define a cluster as a regiosmall clusters merge into larger clusters, which end up break-
where the local particle volume fraction peaks above ang up into small clusters again and so forth. Progressively
threshold of 1.3 times its average valié, and the limits of  the number of small clusters decreases to the benefit of larger
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FIG. 9. Time evolution of the numbers of clusters of a given size in aFIG. 10. Pair distribution function in théx,y) plane for the simulation of

streamer. The results are for the same simulation as in Fig. 6: 512 fiberé:ig' 6, averaged over various time intervals. The pair distribution function
A=11 nl'g_o 05 andd. d.:d.=1:1:8. Theestimates of the ﬁurﬁbers of Specifies the fraction of fibers with a center-to-center separation at a given
- ’ =Y. ’ x:Uy.Uz=1.1.0.

clusters were obtained using the procedure described in Fig. 8. To remov stance.
the high-frequency noise, the curves have been smoothed by convolution

with a unit-area top-hat function of widtht=8. ] - ) o
tween two fibers is/2d,/2 (owing to the periodicity ik and

y). Starting from a linear profile, corresponding to a uniform
dlistribution of fibers, the function evolves until a maximum

clusters, until a steady state is reached where a combinati = X
of clusters of different sizes cohalfitvo small and two large 2PPears at a finite distance, which represents the most prob-
able separation between two fibers in the horizontal plane.

clusters on averageNote that some oscillations can still be &~ ‘ SN _ X
his peak in the distribution function slowly increases and

observed after the steady state is reached, but typically at-E\_ : ;
higher frequency and weaker amplitude. migrates towards lower values, while the amplitude of the

The periodic boundary conditions in the vertical direc-ta'l decreases. The mterpretauon. is rather simple: the
tion can be expected to have a significant influence on thgtréamer progressively becomes thinner and denser, captur-

observed oscillations. In fact it can be seen that the period df'9 Mmore and more fibers into its core. This process appears
the oscillations is of the same order as the time that it takel® P& extremely slow, and continues even after the cluster
for a fiber to sediment one box height at the mean sedimerfliStribution reaches its steady state in Fig. 9. We can expect
tation speedsee Sec. V D for a discussion on the sedimen—th's densification to eventually slow down and s_top, as ex-
tation raté. The decrease of the period that can observed iffluded volume effects become more and more important as

Fig. 9 is therefore a direct consequence of the increase in tH€ fibers get more tightly packed. Limitations in computa-

sedimentation velocity as a result of the streamer formationt!O" time, however, did not allow us to run our simulations

This periodicity can be understood in the following way: big until a true steady state was observed.

clusters attaining the bottom of the simulation box reappear ) .

at the top and therefore catch up with the smaller cluster€- Horizontal structure and wavenumber selection

that they left behind during the previous period of oscilla- Obtaining more than one concentrated streamer in the
tion. It is unlikely that such oscillations would be observed inlateral direction is a challenging task. In all the previous
an experiment, where a segregation would occur between tteomputational studies only one streamer was obtained, and it
different cluster sizegwith the large clusters reaching the was not clear whether this was an artefact of the periodic
bottom of the vessel first However, the fact that very big boundary conditions or a consequence of the limited size of
clusters break up and that the cluster size reaches a steathe simulated systems. Neither the horizontal extent of the
state in Fig. 9 bears some significance: it suggests that thestreamers nor the wavelength of the instability have been
is a maximum size beyond which cluster growth becomestudied systematically in the published experiméfits,and
unfavorable and clusters either break up or abandon fibers ithey are not predicted either by the linear stability analsis,

their wakes. so that no information is available on the requirements for
Since the spatial wavelength in the vertical direction andthe simulation box dimensions or number of fibers.
the cluster size distributiofin terms of number of fibejs By increasing the horizontal dimensions of our simula-

reach steady-state values, it is interesting to investigate thion box we were able to obtain more than one streamer in
densification of clusters through the pair distribution func-the lateral direction, as shown in Fig. 11 for instance. For the
tion, which specifies the fraction of pairs of fibers having asystem sizes that we considered, the only way to achieve this
center-to-center separation at a given distance. The pair disvas to drastically reduce the height of the box as well as its
tribution function in the horizontal plane, which is the most width in one horizontal direction: the aspect ratio of the box
interesting, is shown in Fig. 10. Each curve corresponds tin Fig. 11 isd,:d,:d,=10:1:2.This choice of box dimen-
the time average of the function over a different time inter-sions is likely to have an influence on the structure of the
val. Note that the functions are only plotted over half a boxsuspension, first because choosing very different valueg of
width d,/2, whereas the maximum horizontal distance be-and d, introduces an artificial anisotropy in the horizontal
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(@) TABLE lIlI. Influence of the initial distribution on the streamer formation.
L, ) t i = ‘\l\/li n : 5\, T i/q/’ XA "IH 7 Simulation; were perform‘ed‘in poxes of aspect rd;jmy:dzzlo:l:z,‘in
) ‘II K J | ll’ \\{‘ \ | \ | ¢ \"4\\ | | ‘( I\ Il which the initial random distribution was perturbed by the superposition of
Uy 'II,\\“\ N AN il HU | (l\ / ',/’,"‘ | two waves of wavenumbers=1 andk=2: c(x,y,z) =&y+8&,exp(2mix/d,)
N ’} 4”)| }'\[ |1 N ;{l i I,,\l | | 11 1 | +Cexp(4mix/d,). The ratioc,/¢, of the amplitudes of the two waves was
W 4 ”{'/’ M{llll? ‘\ [ h’" L Illl- . {“\k\l\ ﬁ,‘\'i?“w"lf)n\'l' | varied. The table reports the ratig/{i, of thek=1 andk=2 coefficients of
AP + * T L the Fourier transform in the direction of the vertical component of the
(b) initial disturbance velocity field; the number of distinct backflow regions in
S ST IR WRINCENY: > AW R the initial velocity field; the number of concentrated streamers in the final
;r‘t\,i ﬁ,’}%“ WA L A NI‘}; ‘,_\{'gté»"{;u; . distribution.
b |,r|- ,‘1\ G ’ i '.Mi\ . .“('?,," "/l|\ l.,l"l,'\'\ A v N
¢,/¢, G1/0, Backflow regions Streamers
FIG. 11. Distribution of fibers at=140 for a highly elongated box in the
horizontal direction(box aspect ratiod,:d,:d,=10:1:2; the top plot(a) 0.20 0.88 2 2
shows a side view of the suspension while the bottom (iptprovides a 0.66 3.07 1 1
vertical view. The simulation is for 512 fibers of aspect rat11 with an 0.87 3.86 1 1
average effective volume fraction nf®=0.05. Two distinct streamers sepa- ' ’
rated by clarified regions can be observed. 1.29 5.80 1 1
1.59 7.07 1 1

plane, and second because the small valuesoénd d,

make the suspension essentially homogeneous in both the

and z directions. The precise consequences are difficult t& result of the velocity fluctuations around the mean: this
assess until larger simulations are performed, so one shouRfocess, termed hydrodynamic dispersion, is diffusive in na-

be cautious when trying to extrapolate the results presentdyre and therefore rather ?'Cﬂ.’“ is worthwhile here to con-
here to full-scale suspensions. sider the limitations of this simulation. First the orientation

The structure of the suspension in Fig. 11 is quite inter-dynamics as described by slender-body theory are inexact as

esting, as it exhibits a broad region between the core of théhey cannot predict the tumbling motion of an isolated par-
streamers and the clarified fluid where most of the fibers aréicle in shear flow: the consequences of this approximation
very well oriented with gravity, and simply sediment verti- are discussed in more detail in Sec. V E. Second and perhaps
cally with little horizontal motion; a more detailed observa- Most importantly, the quasihomogeneity of the suspension in
tion shows that fibers in this region slowly migrate towardsthe vertical direction as created by the small box dimension
the streamers. The vertically averaged fluid velocity field forand periodic boundary conditions helps make the configura-
the simulation of Fig. 11 is shown in Fig. 12 and provides antion of Fig. 11 stable: inhomogeneities in the vertical direc-
explanation. As expected the vertical fluid velocity peaks intion would quite likely perturb this configuration at least dur-
the core of the streamers, and presents a backflow in th89 the onset of the instability, and may disrupt these large
clarified regions; between those two, a large region of shedi€gions of shear.

exists where the velocity varies almost linearly. The align- ~ The simulation of Fig. 11 was repeated for different ran-
ment of the fibers in the direction of the velocity is then adom initial distributions: sometimes only one streamer
simple consequence of E() for the slender-body orienta- formed, and in very rare cases three streamers were ob-
tion dynamics, which predicts a stable equilibrium with no Served. This strong dependence of the structure formation on
rotational velocity in linear shear when the fiber is aligned inthe initial distribution calls for a more systematic investiga-
the direction of shear. The reorientation of fiber suspension§on. Simulations were run in which the initial distribution

in a simple shear flow is a well-known phenomefti® Wwas perturbed artificially by a superposition of two planar
Unless subjected to lubrication or contact forces, the fiber§/aves in thex direction of wavenumber&=1 and k=2
located in this region can undergo horizontal motion only agWhere k is nondimensionalized by the box length):
c(X,Y,2) =Co+Ciexp(2mix/d,) + Cexp4mix/dy); the ratio
¢,/¢, of the amplitudes of the two waves was varied. The
initial velocity fields were computed and compared to the
final fiber distributions, and the results are summarized in
Table Ill. Several observations can be made. Depending on
the ratio of the two initial wave amplitudes, either one or two
streamers form; only for very small values ©f/¢, do two
concentrated streamers develop, and in all other cases only
one streamer is observed. It is enlightening to compare these
observations to the initial velocity fields, and more precisely
to the ratio(,/0, of the k=1 andk=2 coefficients of the
Fourier transform in the direction of the vertical component

of the velocity, and to the number of distinct backflow re-
FIG. 12. Ver_ti_cally averaged vertical velocity field for the_ _simulation of Fig. gions in the velocity field. The number of concentrated
11. The positive values correspond to downward velocities. The two peak§treamers in the final distribution seems to be correlated to
are located at the core of the concentrated streamers, and a backflow occuys . S . .

in the clarified regions. Large regions of almost linear shear exist betweeh1€ numberA OfAbaCkﬂow regions, which itself is determined
streamers and clarified fluid. by the ratiou,/u,. More precisely, backflow regions seem to

SN
9
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(a) 30000
| O LN YT ULV VIO (®)
S VT .'.“‘(M‘n”'f\“'/% X, 25000
2 \ A= ry A e
/4/%x\ [N Vl:nM.\m‘l“‘\‘ H”(‘\Iv J -? {f “Ll;"J/V"rl/“ll i,
20000 -
(b) <0
1.5 15000 -
1.0
x 051 /\/\/\ 10000
=1
0.0
-0.5 5000
1.0 : ; ; ; .
0 10 20 30 40 50 o P Y . .--7... ,.- ?.- ?...-7
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FIG. 13. Final fiber distributiorta) and initial disturbance velocity fieltb) Wavenumber k
for an initial plane wave perturbation at wavenumber6: c(x,y,z)=C, 1000
+Cgexp(12mix/dy). Only four concentrated streamers can be observed, (b)
which are located in the wells of the initial velocity field. 800 -
. . . 600
act as barriers that cause the fibers to rotate and migrate -
towards the denser “velocity wells.” Since, from the periodic "400 ]
fundamental solution Eq11), the Fourier coefficients of the
velocity scale asl,~ ¢,/k?, the flow is typically dominated 200 -
by thek=1 mode and only one streamer forms.
At the other end of the spectrum, it is observed that o+lla I
perturbations in concentration usually decay at high wave 0 5 10 5 20 25 30
numbers. Simulations were run in which a high-frequency Wavenumber k

rturbationk=4 Wi li he initial distribution;
.pe turbation( ftO 7) was app ed to the bta. djt I:)Ut O' ".. FIG. 14. Magnitude of the coefficients of the Fourier transform in xhe
In most C&?SQS ewer streamers were obtained than 'nltl"ﬂirection of(a) the initial concentration field an@) the vertical component
waves. This phenomenon, that we term streamer coalesf the initial disturbance field for the simulation of Fig. 13. A strong peak at
cence, is illustrated in Fig. 13 for the cdse6. Starting from k=6 can be observed in the initial concentration field; the velocity field,
six initial waves, only four concentrated streamers are 0bbowever, is dominated by the random low-wavenumber fluctuationg).
served in the final distributiofFig. 13a)]. The initial verti-

cal velocity field[Fig. 13b)] somewhat modifies our previ- - . .
ous criterion and shows that streamers form in the Iocafjecay because of the periodic boundary conditions in the

minima or “wells” of the velocity field, although they need vertical direction, which effectively prevent the horizontal
not be surrounded by independent’ backflows. Figure 1£onvection currents that would otherwise occur in a bounded

shows the discrete Fourier transforms in théirection of si/stem. FlbeI.r susptensmnsthare more tcotrnplex gue Ito 'tthe
the initial concentration perturbation and of the initial veloc-3ONg coupling between the concentration and velociy
ity field. Although thek=6 mode dominates the initial con- fields, a’?d even though_a S|m|lar_re0|rc_ulat|0n as in sphere
centration, it only creates a very small disturbance in the?USPENSIONS may occurin a contaln_erV\_nth a bo'Ftom W."j.l" and
velocity spectrum, which is swamped by the low- may lead to some type of homogenization, the instability on

wavenumber modesnostly k=1) arising from random con- the contrary acts against the homogenization of the suspen-

centration fluctuations. Therefore high-wavenumber pertur>'" and tends to accentuate the fluctuations. The combina-

bations cannot survive as even tiny Iow-wavenumbellion of these two effects may lead to a qualitatively different
fluctuations will typically dominate the velocity field. behav_lor than is observed n sphere SUspensions, anq more
The presence in most simulations of this strdagl work is needed to determine whether the physical picture

mode in the velocity field is reminiscent of the large recircu-described by Guazzeffi by which the initial recirculation

lation vortices observed in experiments on sphere suspe|¥-0rtex diminishes and is replaced by smaller less intense

sions. Guazzeff studied the sedimentation of suspensions/°tices still holds; understanding this process may be the
of spheres using particle image velocimetry, and observehey t_o_ explaining the wavenumber selection of the
that during the initial moments of her experiments the veIoc—'nStab'“ty'
ity field is dominated by large vortices of the size of the ) . .
T : . C. Orientation dynamics
container; after a while these vortices decay and leave place
to smaller vortices whose size is found to be independent of Both experimenl’é and previous simulation&showed a
the container dimensions. As explained by Hiffththese reorientation of the fibers in the direction of gravity, with
large convection currents in the initial times are due to theoccasional flippings. This is confirmed in our results and is
difference in weight between the two sides of the suspensiontlustrated in Fig. 15, which shows the evolution of the pro-
these currents have the effect of homogenizing the two sidegected angle of a typical sedimenting fib&he projected
after which they decay. The strog-1 mode observed in angle being defined as the angle between the major axis of

our simulations has the same origin, but is not allowed tahe fiber and the horizontal planeAfter a transient phase
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FIG. 15. Time evolution of the projected angle for a typical filéengle
between the major axis of the fiber and the horizontafter a transient
phase, the fiber spends most of its time almost aligned with grépity-
jected angle of 4/2) with occasional flippings.

lasting untilt=100 approximately, the fiber ends up spending

most of its time aligned in the vertical direction. The trajec-
tory of Fig. 15 is very similar to those observed in
experimenté.5

The evolution of the orientation statistics can be studied

by looking at the average square orientation of the fibers i
the direction of gravityps(t)ps(t)). Its time evolution is pre-

Phys. Fluids 17, 033301 (2005)
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sented in Fig. 16 for three simulations with the same num-
bers of fibers, aspect ratios, and volume fractions but differ-
ent periodic cell dimensions. In all three simulations

(ps(t)ps(t)) starts from a value close to 1/3 corresponding to

an initial distribution with random orientations, and increases
progressively as the fibers begin to align. The three curves
eventually reach a steady state, the value of which differs in

each case and gives an indication of the average orientation.

0.06 -

Probability

A lower steady state value is obtained with high-aspect rati

boxes, corresponding to fewer fibers being aligned with

gravity: this had already been observed in smalle
simulations'® and is corroborated by the orientation distribu-
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FIG. 16. Time evolution of the average square orientation in the direction o

gravity. All three curves are for 512 fiber&=11 andnl®=0.05, and differ-
ent box dimensions. Note how the time to steady state and the value of t
steady state depend on the periodic cell aspect ratio.
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FIG. 17. Comparison of the orientation distributions of two different simu-
lations with the experiments of Herzhaft and Guazzdlef. 15. The two
upper plots are for simulations of 512 fibers of aspect ratidl1, with an
average effective volume fraction af®=0.05 and different simulation box
aspect ratios:(a d,:d,:d,=1:1:8 (simulation of Fig. §, (b) d,:d,:d,
=10:1:2(simulation of Fig. 11 The bottom plofc) shows the experimen-
tal distribution, obtained for the same particle volume fraction and fiber
aspect ratio.

tions presented below. The time to steady state also depends
on the simulation box dimensions: it is much quicker in gen-
eral for low-aspect ratio boxes.

Figure 17 compares the orientation distributions of the
two simulations of Figs. 6 and 11 to the experimental results
of Herzhaft and Guazzelif In all three cases the distribution
Presents a clear peak slightly below/2, which was ex-
pected and indicates that a large number of fibers are almost
raligned in the vertical direction. A second local maximum
near zero can also be observed in the experimental data,
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showing that the horizontal direction is also a preferred fiber
orientation, but this maximum is not reproduced by either of
the two simulations.

The breadth and height of the main peak differs greatly
between the two simulations. In the first caggh-aspect
ratio periodic cell, the peak is rather broad and weak, and
the tail of the distribution is quite thick, indicating that quite
a large number of fibers are not aligned; in the case of the
second simulatioriwide and thin periodic cél] the peak is
quite higher and narrower and the tail is finer, and the overall
profile of the distribution compares somewhat more favor-
ably with the experimental data. This is consistent with the
findings of Fig. 16, where we observed two different values
for the steady-state average square orientations. A simple in-

Phys. Fluids 17, 033301 (2005)

128 flbers, d,:d,:d, =1:1:8
512 fibers, d,:d,d, =1:1:8
512 fibers, d,:d,d, =1:1:1

40 60 80

100 120 140
Timet

spection of the suspensions of Figs. 6 and 11 provides aRG. 18. Time evolution of the average sedimentation rate for simulations of
explanation. In the case of the high simulation box, only thel28 and 512 fibers. In each case 11 andnl®=0.05. While a steady state is

core of the streamers is really captured, where most of the
fibers are entangled inside clusters and are not free to align.
Figure 11, however, demonstrates that in a wider box the

reached rapidly with 128 fibers, the sedimentation rate keeps increasing with
12 fibers, and its value depends on the periodic cell aspect ratio.

streamers are surrounded by large regions of shear where tagy, down due to excluded volume effects, and it is likely

fibers are isolated and can align freely with gravity. In Fig.nat 4 steady sedimentation rate would be reached if the
17(b) the height of the peak is slightly overestimated: thisgjmylations were run long enough.

may be a consequence of the very short height of the box and - Figyre 18 also shows a strong dependence of the sedi-
of the periodic boundary conditions, as in a real system inmentation rate on the dimensions of the periodic cell: lower
homogeneities in the vertical direction would perturb t0sedimentation rates are obtained in high-aspect ratio boxes,
some extent the shear regions between the streamers. Sl petter agreement with the experimental values. Figure 19
these results suggest that these large regions should not Bgmpares the velocity distributions for such a simulation to

ignored if we want to obtain accurate orientation statistics,
hence the necessity to use wide enough boxes to capture the
full extent of the horizontal structures.

D. Sedimentation rate and velocity statistics

The formation of dense clusters has a strong influence on
the average sedimentation speed of the suspension, which is
enhanced in the dilute and semidilute regimes. This phenom-
enon is really a consequence of the concentration instability,
as the velocity is generally hindered in dilute suspensions
such as homogeneous suspensions of sphevese that in
the concentrated regime suspensions of fibers also exhibit
velocity hindering's,0 presumably because strong entangle-
ments present in concentrated suspensions prevent the insta-
bility from developing.

In their small simulations, Butler and Shagf&hob-
served that the average sedimentation rate of the fibers
slowly increases as the instability develops and eventually
reaches a plateau, the value of which depends on the aspect
ratio of the periodic cell. For the larger systems considered in
this study, the time to steady state was generally very long
(typically more than 200 time unitsso that most of the
simulations were stopped before reaching a steady-state ve-
locity (Fig. 18). This is easily understood in the light of the
earlier discussion on the pair probability functions: in the
Stokes flow regime the sedimentation velocity is a function
of the spatial configuration of the suspension only, and as

Probabllity

Probability
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[

o
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— Horizontal velocity
mmmm Vertical velocity

-2 0 2 4 6
Fiber velocity u
{ (b) 3 Horizontal velocity
mmmm Vertical velocity
-2 0 2 4 6

Fiber velocity u

was observed in Sec. V B 1 the clusters keep getting densé&iG. 19. Comparison of the velocity distributions with the experimental

and denser even after the cluster distribution and orientatio

ata of Herzhaft and Guazze(Ref. 15. The upper plo{a) corresponds to

e . he simulation of Fig. 6512 fibersA=11,n13=0.05,d,:d,:d,=1:1:8. The
statistics have reached their steady state. However, we al$@om plot(b) shows the experimental distribution, obtained for the same

argued in Sec. V B 1 that the densification should eventuallyarticle volume fraction and fiber aspect ratio.
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the experimental results of Herzhaft and GuazZ8liivhile @ S'e“"e""“V
the horizontal velocities are captured reasonably well, the {\\ ) " | M, R N ,\‘}I“
vertical velocity distribution predicted by our simulation is r' 1 |m /J’// I Q{ fl' th \\\(" Wy ﬁ\‘
slightly shifted to the right and somewhat broader than in the |5 ‘Li‘ \t%w ) N ,’I,\ \ \|” m W
experiments; both the mean and the variance of the vertical '5 T oy m Mt ““
velocity are overestimated, and this generally gets worse as () Finite aspect ratio, A = 11

the simulation box gets wider. Butler and Shadfegncoun- £ AT T Axw
tered the same difficulty and came up with the following i |J"’ l‘l il ‘/”/ 1\' ‘f\ t'/f“ \‘\"I e ‘”
heuristic rule: for the system sizes they considered, they ob- / W’ )1 ,'|'| | ~ i “ht b '.\ 'ltn;
served that setting the aspect ratio of the periodic cell to | %} oF Iy “(;I :l} \““ ll \\ if lv ‘H\ \\ "{\I
d,/d,=N/16, whereN is the number of fibers, enabled them o

to obtain the right sedimentation rate and fairly good velocityFIG. 20. Comparison of the final fiber distributions obtained using the origi-
distributions. Their rule, however, is not easily applled in thenal slender-body formulation of E@3) (a), and the finite aspect ratio for-
case of very large systems, as it would require extremelf14e1°) & E49 0. e stuiten s 012 hemta i C0 00
high and thin boxes, and preclude the capture of more thafies the use of the slender-body approximation.

the core of a single streamer. If we want to resolve the large

shear regions between the streamers, which as we established

are important for obtaining correct orientation statistics, Yelimplemented using SPME: indeed taking the gradient of the
larger systems may be needed, in which both the lateral ange|ocity in Eq.(14) allows one to derive similar Ewald sum-
vertical box dimensions are large compared to the length of gyation formulas for the components of the rate of strain and
fiber. Using a bottom wall and nonperiodic boundary condi-rate of rotation tensors, which are then computed following
tions in the vertical direction may also provide a solution. the same algorithm as for the disturbance velo¢Bec.
Il B). While analytical expressions were used for the real
sums, the Fourier sum of the gradient was computed numeri-
Earlier mention was made of the limitations of the cally on the Fourier space grid using a fourth-order central
slender-body approximation. The significant feature of thefinite difference scheme.
model is that slender bodies in a linear shear flow simply ~ For the aspect ratios considered in this study, the modi-
align in the direction of the flow, while exact Stokes flow fications entailed by the use of E(.8) were minor in gen-
solutions suggest that an elllpsajidand in fact any body of eral. This is illustrated in Fig. 20, which compares the final
revolutior{’z should undergo a periodic tumb"ng motion distributions obtained with the two different formulations. In
known as Jeffery's orbits. These poor orientation dynamicgarticular, the streamer formation is not aﬁ:ected, and neither
may influence our results in two ways: by modifying the @re the shear regions surrounding the streamers where the
dynamics inside the large shear regions observed around tii#gnment of the fibers is sensibly the same. Figure 21 com-
streamers in Sec. V B 2, which in turn may have an impacfares for both simulations the time evolution of the average
on the orientation statistics presented in Sec. V C. In particuSquare orientation in the direction of gravity, which quanti-
lar, we may expect the migration towards the streamers to bées the degree of alignment of the suspension: the differ-
enhanced in the presence of tumbling. ences observed are within the statistical fluctuations of the
To assess more precise|y the conseqguences of tH@ta This can be interpreted as follows: even though slender
slender-body dynamics, we implemented a slightly differentoodies in a simple shear flow align with the flow, the distur-
model in which Eq.(3) for the orientation dynamics was bance field between the streamers is not exactly linear and
replaced by the following:

\- \I \:”I II\\ \

—

E. Validation of the slender-body approximation

3 1 AZ— 0.8
Pa=(1-Pa®P,) j (1 —s2>( oLt ﬂ<s)>pads
-1
0.7 1
31In(2A)
pir— X T (18) 0.6 1

<Pyt

where E(s)={Vu'(s)+[Vu'(s)]}/2 and Q(s)={Vu’'(s)
-[Vu’(s)]"}/2 are, respectively, the rate of strain and rate of
rotation tensors of the disturbance velocity field, evaluated at
positionx,+sp,, along the axis of the fiber. Equatig¢f8) is —_ Slender-body theory

a simplified version of the exact equation for the orientation Finite aspect ratio, A=11
Qynamlcs o_f a spheroﬁ, in wh|9h we neglected an a_dd|— 0 2 40 60 8 100 120 140
tional term involving the Laplacian of the rate of strain on Time t

the basis that its coefficient 1(&-1) is very small for

; ; ; ; ; FIG. 21. Time evolution of the average square orientation in the direction of
high-aspect ratio particles. Letting—< in Eg. (18) and gravity for the two simulations of Fig. 20. Both modéender-body for-

performing an integration by parts allows one to recover Edyyjation Eq.(3), and finite aspect ratio formulation E¢L8)] give very
(3) for the slender-body dynamics. Equati@®) can still be  similar results, confirming the validity of the slender-body approximation.
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fluctuations in this disturbance field can still cause tumbling  More interestingly, our simulations managed to capture
(and indeed such tumbling or “flipping” events can be ob-several concentrated streamers in the horizontal direction.
served in Fig. 1b Furthermore the correction entailed by This was made possible by drastically increasing one of the
Eq. (18) is quite weak: the coefficiertA?~1)/(A2+1) only  horizontal dimensions of our simulation box. These simula-
changes from 1 to 0.98 when the aspect ratio is varied frontions in wide boxes highlighted the presence of broad shear
infinity to 11. This suggests that the flipping induced by theregions between the core of the streamers and the clarified
velocity fluctuations dominates the tumbling due to the finitefluid, where most of the fibers sediment almost vertically
thickness of the particles, and under the assumption that thaith little horizontal motion. These regions of shear had not
Laplacian term that we neglected to obtain E) is indeed  been captured in previous simulations owing to the insuffi-
small, these results confirm the validity of the slender-bodycient size of the periodic cells, and seem to account for some
approximation for simulations of high-aspect ratio particles.discrepancies that had been observed in the orientation dis-
tributions. While the exact process leading to the wavenum-
ber selection is still poorly understood, our simulations pro-
vided partial answers: the formation of concentrated
We have implemented a fast algorithm, called smootistreamers seems to be linked to the presence of velocity
particle-mesh Ewald, which allows one to compute effi-wells in the initial disturbance field, created by concentration
ciently the hydrodynamic interactions between small parfluctuations in the distribution of fibers. A simple argument
ticles suspended in a fluid. SPME is comparable to the acshows that for a random suspension the initial disturbance
celerated Stokesian dynamics method of Sierou and Bfadyfield is dominated by perturbations of long wavelengtks
for spherical particles, but is characterized by different force=1 mode. While experiments on the sedimentation of
assignment and interpolation schemes using CardindiPheres suggest that this initial recirculation cell should de-
B-splines, which are particularly well suited for complex ex- cay, this is not observed in our simulations owing to the
ponentials and provide stability at high orders of interpola-periodic boundary conditions in the vertical direction.
tion. The method, which allows one to efficiently compute ~ Obtaining accurate sedimentation rates and velocity dis-
the disturbance field induced by periodic distributions oftributions remains a very difficult task, as these two quanti-
point forces, has been applied to infinite suspensions of sleriies depend strongly on the aspect ratio of the periodic cell.
der bodies(line distributions of point forcesin a gravity —Using high-aspect ratio boxes in general gives acceptable
field, but could easily be applied to different particle shapegdesults, but the rule defined previously by Butler and
(disks or platelike particles for instance, or arbitrary solid Shagfefi® on the box aspect ratio does not allow to capture
surfaces in a boundary element simulajjoas well as dif- more that the core of the streamers. In order to capture cor-
ferent flow conditions(particulate flows in an imposed ve- rect velocity statistics while resolving the horizontal struc-
locity field, pressure-driven flows, etcThe algorithm can ture of the suspension, we speculate that yet larger systems
also be easily parallelized, as it is based on a summation Gfre required.
close particle pair interactions for which a domain decompo-
sition is suitable, and on the fast Fourier transform algorithmackKNOWLEDGMENTS
for which parallel implementations are already available. i
When applied to the sedimentation of rigid fibers at zero ~ The authors wish to thank Jason E. Butler and Elisabeth
Reynolds number, our fast algorithm has allowed us to simuGuazzelli for some fruitful discussions. D.S. was supported
late large systems of up to 512 fibers on a single processoby a Stanford Engineering Fellowship.
while maintaining a good level of approximation in our
simulation method where the force moments on each fibeAppEme: CARDINAL B-SPLINE INTERPOLATION
are retained up to the stresslet term. In particular, the con-
centration instability observed in sedimenting suspensions of  This appendix presents a few basic results on the Cardi-
nonspherical particles was captured very convincingly, andhal B-splines used for the interpolation in the SPME algo-
our simulations of larger systems have provided valuable infithm. A similar, somewhat more detailed discussion can be
formation on the microstructure of this type of suspensionsfound in the work of Essmanet al,*® or in the work of
Using very elongated boxes in the direction of gravity, Schoenberd®
we were able to study the dynamics inside the core of the A Cardinal spline of ordep is a function defined over
streamers that form as the fibers sediment. We observed thtite set of real numberg, of classCP™2 (i.e., p—2 times
the streamers are in fact composed of distinct clusters aofontinuously differentiable and such that its restriction to
various sizes and velocities, which can either merge or brealiny intervallm,m+1) for any integem is a polynomial of
up. As the instability begins to develop, our simulations ex-degree less than or equalpe 1. The set of Cardinal splines
hibited a mechanism by which small clusters aggregate intof orderp is denotedS, and is easily shown to be a vector
larger clusters, which can again break up. After a transienspace. Quite obvioush§, is stable by integer translation,
phase, a steady state is observed in which a combination ak., if f(u) is in S, so isf(u—m) for any integem. A linear
clusters of different sizes cohabit on average. The break-upasis for this vector space is provided by the Cardinal
phenomenon, along with the presence of a steady state, sug-splines, which are defined as follows. For any real number
gests that clusters beyond a certain size become unstable, ane R, introduce the notations, =maxu,0)=(u+|u|)/2 and
either break up or abandon fibers in their wakes. uP=(u,)P. Define the following function oveR:

VI. CONCLUSION
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propertyg,(u+1)=2zg,(u) to be satisfied. A simple recursion
Mp(u) = r 1)|E(— )k ( 0! (u-k?% ueR. leads toc,=2"c, for all integersm, and hence
gp(W) =co®y(u), where ®y(u)= > Z"My(u-m).
It can be shown thatl,(u) is a Cardinal spline, and that the M=o
set of its integer translatesd,(u-m), called Cardinal (A5)
B-splines, forms a basis &, This means, in particular, that ] o
any functionf(u) in S, can be written uniquely as If ®(0) is nonzero, we can choose the coefficiegto be

1/®,(0). Then we have by constructiog,(0)=1 and

gp(m)=zg,(m-1) for any integem, so that by simple recur-
sion gp(m)-zmgp(O)-zm It can be shown that the only case
where ®,(0)=0 is whenp is odd and %|=K. In all other
The function My(u) can be shown to have the following cases we have constructegth order spline which interpo-
interesting properties: lates the functiog(u) at all the integers. Recalling the origi-

(1) Mp(u)>0 forue (0,p) andM(u)=0 otherwise. In par- nal definition ofz, and defining
ticular, this shows that all theth order Cardinal k
B-splines have compact support of lengthl. 1 p{Zm (p 1)]
(2) Mp(u) is symmetric with respect to the center of its sup- b(k) =

(A1)

fw= > cyMy(u-m).

m=—o

. = ®,(0) P2 ’
port: My(p—u)=M,(u). p s p( _km)
. . o M, (m+ 1)exp 27—
3) Irie CardinalB-splines sum up to 1=~ M p(u—m) = p

(4) The pth orderB-splines can be obtained from the lower- we obtain
orderB-splines by a recursion formula

p<2m|:<) b(k) 2 M (U - mexp<27r|k ) (AB)

p —
MpU) = == Mp1(0) + E My y(u= 1), (A2)
In practice EqQ.(A2) is used to compute the Cardinal which is the same as E(L5). The error in the approximation
B-splines, rather than the definition E@\1). Eq. (A6) can be shown to be bounded (B/K|/K)P.

(5) The derivatives of thd3-splines can be obtained from
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