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In the classical analysis of electrophoresis, particle motion is a consequence of the interfacial fluid
slip that arises inside the ionic charge cloud �or Debye screening layer� surrounding the particle
surface when an external field is applied. Under the assumptions of thin Debye layers, weak applied
fields, and zero polarizability, it can be shown that the electrophoretic velocity of a collection of
particles with identical zeta potential is the same as that of an isolated particle, unchanged by
interactions �L. D. Reed and F. A. Morrison, “Hydrodynamic interaction in electrophoresis,” J.
Colloid Interface Sci. 54, 117 �1976��. When some of these assumptions are relaxed, nonlinear
effects may also arise and result in relative motions. First, the perturbation of the external field
around the particles creates field gradients, which may result in nonzero dielectrophoretic forces due
to Maxwell stresses in the fluid. In addition, if the particles are able to polarize, they can acquire a
nonuniform surface charge, and the action of the field on the dipolar charge clouds surrounding them
drives disturbance flows in the fluid, causing relative motions by induced-charge electrophoresis.
These two nonlinear effects are analyzed in detail in the prototypical case of two equal-sized ideally
polarizable spheres carrying no net charge, using accurate boundary-element simulations, along with
asymptotic calculations by the method of twin multipole expansions and the method of reflections.
It is found that both types of interactions result in significant relative motions and can be either
attractive or repulsive depending on the configuration of the spheres. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2931689�

I. INTRODUCTION

Electrokinetic phenomena provide an efficient means of
manipulating particles at the microscale.1–6 The simplest and
most classical of these phenomena is electrophoresis,1 which
describes the motion of a charged particle in an electrolyte
when an external electric field E0 is applied. The mechanism
for this motion has been studied extensively and is well un-
derstood: the charged particle attracts counterions in the so-
lution, which accumulate near its surface and form a charge
cloud or Debye screening layer. The action of the electric
field on the excess charge in this layer then results in the
motion of the fluid relative to the particle surface and, there-
fore, in the propulsion of the particle. In situations where the
Debye layer is thin with respect to the particle dimensions,
this effect can be modeled using an effective slip velocity at
the outer edge of the Debye layer �which effectively coin-
cides with the particle surface in the thin-layer case�,

us�x� = −
��

�
E�x� , �1�

where � and � denote the electric permittivity and the vis-
cosity of the suspending fluid, � is the particle zeta potential
�which is a constant material property related to the particle
surface charge�, and E is the value of the local electric field
on the particle surface. Equation �1� constitutes an effective
boundary condition to be used for solving the flow problem

around the particle, from which the electrophoretic velocity
can then be inferred as U= ��� /��E0.

When several particles with the same fixed zeta potential
are present in the fluid �as in a suspension�, Eq. �1� still
applies on the surface of each of them, and it can be shown
that the velocity of each particle is the same as if it were
isolated, unchanged by interactions.7,8 In particular, relative
motions will not occur. Consequences of this observation are
that �i� electrophoresis in solution is inefficient at separating
particles by size �however, separation can be achieved if
the particles are placed in a gel9�, and �ii� hydrodynamic
dispersion is not expected to occur in suspensions undergo-
ing electrophoresis.

The classical analysis outlined above, however, neglects
two types of nonlinear electrokinetic effects, which as shown
here may also arise and result in relative motions in particu-
late suspensions. The first effect is similar in nature to dielec-
trophoresis �DEP� �or motion of a particle in a nonuniform
electric field� and is a consequence of the Maxwell stress
tensor in the fluid,

�m = ��EE − 1
2E2I� , �2�

which upon surface integration allows the calculation of the
electric force and torque on a particle. In the case of a single
spherical particle in a uniform field, the electric force and
torque are easily shown to be zero. However, when more
than one particle are present, the distortion of the external
field by the particles may result in nonzero forces by sym-
metry breaking.10 A similar observation was previously made
by Yariv,11 who considered the case of a single sphere in thea�Electronic mail: dstn@uiuc.edu.
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vicinity of a planar wall and showed that the presence of the
wall indeed results in a nonzero force. It should be noted that
the DEP forces described here are not contingent upon par-
ticle polarizability.11

A second effect arises when the particles can polarize
under the action of the external field. In this case, they ac-
quire a nonuniform surface charge upon polarization �in ad-
dition to their native surface charge or zeta potential�, which
drives an additional flow around their surfaces. This induced-
charge electrophoresis �ICEP� was first predicted in the
Ukrainian literature12–16 �as reviewed by Murtsovkin17� and
recently rediscovered by Squires and Bazant in the case
of isolated spherical particles,18,19 as well as nonspherical
particles.20–24 This effect was also recently observed
experimentally.25–27 When several particles are present in
suspension, these induced flows may result in relative mo-
tions through hydrodynamic interactions. While a detailed
study of these motions was recently performed in the case of
rodlike particles based on slender-body theory,22,23 the case
of spheres has received less attention, and only asymptotic
results valid for very widely separated particles have been
proposed so far.10,14–16

In this paper, these nonlinear interactions are analyzed in
detail in the prototypical case of two equal-sized spheres. We
employ boundary-element simulations, together with
asymptotic calculations using the method of reflections28,29

and the method of twin multipole expansions,30,31 to provide
the first highly accurate calculation of the forces and motions
resulting from both DEP and ICEP, in the case where the two
spheres are ideally polarizable �such as conducting�. The
governing equations for the electric and flow problems are
described in Sec. II, and the boundary integral formulation
and results from the calculations are presented in Sec. III. We
discuss the implications of these results on particle motions
and far-field fluid flow in Sec. IV and conclude in Sec. V.

II. PROBLEM FORMULATION

We consider two neutrally buoyant spheres ��=1,2� of
radius a suspended in an electrolyte of viscosity � and elec-
tric permittivity �, as depicted in Fig. 1. We denote by x�

c the
position of the center of sphere � and by R=x2

c −x1
c the sepa-

ration vector between the two sphere centers, pointing from

sphere 1 toward sphere 2. Both spheres are assumed to be
ideally polarizable, as would be the case for conducting par-
ticles, and to carry no net charge �Q�=0�. This allows us to
isolate the nonlinear effects of DEP and ICEP; if the particle
charge were nonzero, the standard linear electrophoretic mo-
tion could simply be added to the results derived here.

A uniform electric field E0 is applied, and under the
action of the field, the spheres polarize and attract counteri-
ons in the electrolyte, which accumulate near their surfaces
leading to the formation of dipolar charge clouds. At steady
state, the resulting Debye layers on the particle surfaces repel
the local electric field lines, in such a way that the spheres
and their charge clouds behave like insulators.19 In the limit
of thin Debye layers and weak applied fields, the electric
potential ��x� in the electrolyte satisfies Laplace’s equation,

�2��x� = 0, �3�

subject to a no-flux boundary condition at the outer edge of
the Debye layers,

n� · �� = 0, x � S�,

�4�
� → − x · E0, �x� → � ,

where n� is the outward normal on the surface S� of sphere
�. In the thin Debye layer limit, the no-flux boundary con-
dition can effectively be applied at the surface of the spheres.
Note that this boundary condition can be justified using
asymptotic theory.19 A method of solution of Eq. �3� is de-
scribed in Sec. III A.

Knowledge of the potential � allows the determination
of the electric field E=−��, from which the Maxwell stress
tensor can be calculated using Eq. �2�. The DEP forces and
torques on the particles are then obtained as

F� = �
S�

��m · n��dS�, �5�

T� = �
S�

�x − x�
c � � ��m · n��dS�. �6�

It is easy to see that for spherical particles, T�=0. Indeed,
since the electric field is tangential on the sphere surfaces
�E ·n�=0�, the Maxwell stresses on the surfaces are normal:
�m ·n�=−�E2n� /2. Observing that x−x�

c =an� on sphere �,
we conclude that the dielectrophoretic torque is identically
zero.

Finally, the action of the electric field on the nonuniform
charge clouds leads to the motion of the counterions near the
particle surfaces and drives a steady fluid flow. As shown by
Squires and Bazant,19 this ICEP flow can be captured via an
effective fluid slip velocity on the surface of the spheres,

us�x� = −
���x�

�
E�x�, x � S�. �7�

The effective zeta potential ��x� is now nonuniform and is
related to the electric potential drop across the Debye layer,

FIG. 1. Problem geometry. We consider two equal-sized spheres of radius a
separated by a vector R and placed in an external electric field E0.
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��x� = �0
��� − ��x�, x � S�, �8�

where the constant �0
��� is determined to enforce the neutral-

ity condition on sphere �,

�
S�

��x�dS� = 0, �9�

i.e.,

�0
��� =

1

4�a2�
S�

��x�dS�. �10�

The fluid velocity u�x� and the linear and angular veloci-
ties U� and �� of the spheres can then be obtained by solv-
ing the Stokes equations for the fluid motion,

− ��2u + �p = 0, � · u = 0, �11�

subject to the boundary conditions

u�x� = us�x� + U� + �� � �x − x�
c �, x � S�,

�12�
u�x� → 0, �x� → � .

The formulation is closed by specifying the force and torque
balance on each sphere,

�
S�

��h · n��dS� + F� = 0 , �13�

�
S�

�x − x�
c � � ��h · n��dS� = 0 , �14�

where �h=−pI+���u+ ��u�T� is the hydrodynamic stress
tensor in the fluid. Note that even though DEP and ICEP
occur concurrently, the linearity of the Stokes equations al-
lows us to solve for both types of motion independently, as
will be done in Sec. III.

DEP and ICEP are nonlinear phenomena that scale qua-
dratically with the applied field E0: reversal of the field
therefore does not impact the motion, and alternating fields
result in a steady motion. Making use of symmetries, it is
then clear that the total external force and mean translational
motion must be zero, F1=−F2 and U1=−U2, and the rota-
tional motion of the two spheres must be the same,
�1=�2=�. In Sec. III, we focus on determining the DEP
force F=F1 on the first sphere, and the relative velocity
U=U2−U1 between the two spheres, along with the angular
velocity �. The dependence of F, U, and � on the applied
field and separation vector R can be written in tensorial form
as

F = 4��a2F�	,R̂�:E0E0, �15�

U = ��a/��M�	,R̂�:E0E0, �16�

� = ��/��W�	,R̂�:E0E0, �17�

where we have defined 	=2a /R and R̂=R /R. F and M are
dimensionless third-order tensors and W is a dimensionless
third-order pseudotensor. Using symmetries, the most gen-

eral form for these tensors can be shown to be, in indicial
notation,

Fijk�	,R̂� = f�	��
ijR̂k + 
ikR̂j� + g�	�R̂i
 jk + h�	�R̂iR̂jR̂k,

�18�

Mijk�	,R̂� = l�	��
ijR̂k + 
ikR̂j� + m�	�R̂i
 jk

+ n�	�R̂iR̂jR̂k, �19�

Wijk�	,R̂� = w�	��ijlR̂lR̂k, �20�

where �ijl is the alternating tensor, and f , g, h, l, m, n, and w
are seven dimensionless scalar functions of 	� �0,1�. In par-
ticular, the relative motion of the two spheres is entirely de-
termined by the four functions l, m, n, and w, the calculation
of which is described next.

III. BOUNDARY-ELEMENT CALCULATIONS

A. Electric problem

We solve Laplace’s equation �3� around both spheres
using the boundary integral equation in its double-layer for-
mulation �e.g., Zinchenko32�. For y�S�,

��y� = 2�0�y� +
1

2�
�
�=1

2 �
S�

��x�n�x� · �G�y;x�dSx,

�21�

where �0�y�=−E0 ·y is the undisturbed external electric po-
tential and G�y ;x� is the Green’s function for Laplace’s
equation in an infinite domain,

G�y;x� =
1

�y − x�
. �22�

Note that Eq. �21� satisfies the no-flux boundary condition
�4� by construction. When �=�, the integral on the right-
hand side of Eq. �21� is singular. This problem can be rem-
edied using the following integral identity:

�
S�

��x�n�x� · �G�y;x�dSx

= �
S�

���x� − ��y��n�x� · �G�y;x�dSx − ��y� . �23�

The boundary integral equation �21� then becomes, for
y�S�,

��y� − �0�y� =
1

4�
�

S�

���x� − ��y��n�x� · �G�y;x�dSx

+
1

4�
�

S3−�

��x�n�x� · �G�y;x�dSx, �24�

where both integrals are now regular.
Equation �24� can be solved numerically using a

boundary-element method. The surface of each sphere is
discretized into an unstructured highly uniform grid of six-
point curved triangular elements using the algorithm of
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Loewenberg and Hinch,33 and all variables are approximated
with quadratic functions over each element in terms of local
triangle curvilinear coordinates �
, ��. This ensures second-
order accuracy for the evaluation of the integrals.34 Figure 2
shows a typical mesh used in the calculations, with 1280
triangles corresponding to 3842 quadrature points.

Once the value of the potential � has been obtained
on the surface of the spheres, the surface electric field is
calculated as E�x�=−�s��x�, where the surface gradient
�s�= �I−nn� ·�� is determined by solving a 3�3 linear
system at each quadrature point on the spheres �e.g.,
Pozrikidis35�,

�x

�

· �s� =

��

�

,

�x

��
· �s� =

��

��
, n · �s� = 0. �25�

Knowledge of the surface electric field then allows the de-
termination of the Maxwell stress tensor using Eq. �2�, from
which the dielectrophoretic forces are calculated using Eq.
�6�. Results of the calculations for the functions f�	�, g�	�,
and h�	� are shown in Fig. 3. They are also compared to
asymptotic results obtained using the method of
reflections28,29 and the more general method of twin multi-
pole expansions,30,36 which is described in the Appendix. In
particular, the asymptotic results obtained by the method of
reflections are

f�	� = − 3
64	4 + O�	6� , �26�

g�	� = − 3
64	4 + O�	6� , �27�

h�	� = 15
64	4 + O�	6� . �28�

We find excellent agreement between the boundary-element
calculations and the method of twin multipole expansions, in
which 50 terms were retained in the expansions to ensure an
error of less than 1% at 	=0.98 �or R /a�2.05�. The method
of reflections to O�	6� �Eqs. �26�–�28�� performs well for 	
�0.6, i.e., R /a�3.3, but fails to capture the correct force
magnitude at shorter separation distances. From the sign of

the functions f�	�, g�	�, and h�	�, it can be shown that the
DEP forces on the spheres are attractive when the spheres are

aligned in the direction of the electric field �E0 · R̂= �E0�,
whereas they are repulsive when the spheres are aligned in a

perpendicular direction �E0 · R̂=0�. The precise particle mo-
tions resulting from these forces are calculated in Sec. III B.

An important result visible from Eqs. �26�–�28� is the
far-field decay of the DEP force as O�	4�=O�R−4�. This de-
cay is quite fast and significantly faster than the decay of
interactions in other common particulate flows, such as sedi-
mentation or shear flow, in which it is of O�	� and O�	2�,
respectively. These DEP interactions are therefore expected
to be quite weak unless the particles are very close to each
other. Note that a similar O�	4� dependence had been ob-
tained by Yariv11 for the decay of the DEP force on a single
sphere near a planar wall.

As pointed out by Yariv,11 there is a close analogy be-
tween the DEP forces calculated here and pressure forces in
incompressible and inviscid potential flows. It should there-
fore be noted that the functions f , g, and h had previously
been obtained in the context of interactions between spheri-
cal bubbles in inviscid flow,37,38 a problem governed by
nearly identical equations.

FIG. 2. Typical unstructured mesh used in the boundary-element calcula-
tions of Sec. III. The mesh was obtained using the algorithm of Loewenberg
and Hinch �Ref. 33� and is composed of 1280 six-point curved triangular
elements, corresponding to 3842 quadrature points.

FIG. 3. Dimensionless coefficients �a� f�	�, �b� g�	�, and �c� h�	� in the
general expression �18� for the DEP force F as functions of 	=2a /R
� �0,1�. The plots show results from the boundary-element calculations of
Sec. III A, from the method of twin multipole expansions �Refs. 30 and 36�
�cf. the Appendix� in which 50 terms were retained in the expansions, and
from the method of reflections �Refs. 28 and 29� �Eqs. �26�–�28��.
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B. Flow problem

The Stokes equations �11� around the two spheres are
then solved using a deflated double-layer boundary integral
equation �see Pozrikidis34,39 for a detailed derivation�. De-
noting by q the double-layer potential strength, we have for
y�S�,

4�q�y� = − �
�=1

2 �
S�

q�x� · T�y;x� · n�x�dSx

+
n�y�
a2 �

S�

n�x� · q�x�dSx + U� + ��

��y − x�
c � − us�y� +

1

8��
�
�=1

2

J�y;x�
c � · F�,

�29�

where J�y ;x� and T�y ;x� denote the Stokeslet and stresslet
Green’s functions in an infinite domain, respectively,

J�y;x� =
I

�y − x�
+

�y − x��y − x�
�y − x�3

, �30�

T�y;x� = − 6
�y − x��y − x��y − x�

�y − x�5
. �31�

In Eq. �29�, the slip velocity us�y� on the sphere surfaces is
calculated using Eq. �7�, where the nonuniform surface zeta
potential and surface electric field were obtained when solv-
ing the electric problem around the spheres in Sec. III A �the
zeta potential is directly related to the surface electric poten-
tial through Eq. �8��. Finally, to complete the boundary inte-
gral formulation, we relate the linear and angular velocities
U� and �� of the spheres to the double-layer potential
strength by

U� = −
1

a2�
S�

q�x�dSx, �32�

�� = −
3

2a4�
S�

�x − x�
c � � q�x�dSx. �33�

When �=�, the first integral in Eq. �29� is singular. In a
similar fashion as in Sec. III A, this singularity can be re-
moved using the following integral identity:34

�
S�

q�x� · T�y;x� · n�x�dSx

= �
S�

�q�x� − q�y�� · T�y;x� · n�x�dSx − 4�q�y� ,

�34�

where the integral on the right-hand side is now regular.
Upon substitution of Eq. �34� into Eq. �29�, we arrive at the
following integral equation:

�
S�

�q�x� − q�y�� · T�y;x� · n�x�dSx

+ �
S3−�

q�x� · T�y;x� · n�x�dSx

−
n�y�
a2 �

S�

n�x� · q�x�dSx − U� − �� � �y − x�
c �

= − us�y� +
1

8��
�
�=1

2

J�y;x�
c � · F�, �35�

where U� and �� are still expressed by Eqs. �32� and �33�.
Equation �35� was solved numerically using a similar
boundary-element method as in Sec. III A for the electric
potential, on an unstructured grid of six-point curved trian-
gular elements. Because of the higher dimensionality of the
double-layer potential in the flow problem, a slightly coarser
mesh was typically used than for the solution of the electric
potential, resulting in slightly larger discretization errors at
short separation distances.

It should be noted that the forcing terms in Eq. �35� have
two origins: the DEP forces F� on the spheres and the slip
velocity us will both result in fluid and particle motions.
Because Eq. �35� is linear with respect to the double-layer
potential and to velocities �a direct consequence of the lin-
earity of the Stokes equations�, these two types of motions
can be solved separately and superimposed.

Equation �35� was first solved for the DEP motions by
setting the slip velocity to zero, and results for the functions
lDEP�	�, mDEP�	�, nDEP�	�, and wDEP�	� corresponding to the
DEP motion alone are plotted in Fig. 4. As in the case of the
DEP force �Fig. 3�, we compare the results of the boundary
element calculations to results obtained by the method of
twin multipole expansions �with 20 terms in the expansions�
and to the following asymptotic results from the method of
reflections:

lDEP�	� = 1
16	4 − 3

128	5 + O�	6� , �36�

mDEP�	� = 1
16	4 − 3

64	5 + O�	6� , �37�

nDEP�	� = − 5
16	4 + 3

16	5 + O�	6� , �38�

wDEP�	� = 3
512	6 + O�	7� . �39�

Once again, we find that excellent agreement is obtained
between the boundary element calculations and the method
of twin multipole expansions �except at very short separation
distances, which is a consequence of the coarser mesh used
in the boundary-element discretization� and that the method
of reflections performs adequately for 	�0.6.

Similarly, results were obtained for the ICEP motion by
retaining the slip velocity in Eq. �35� but setting the DEP
forces to zero. They are plotted in Fig. 5 against the twin
multipole expansion results and the following asymptotic ex-
pansions from the method of reflections:

lICEP�	� = − 11
32	4 + O�	6� , �40�
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mICEP�	� = 9
16	2 − 11

32	4 + 27
64	5 + O�	6� , �41�

nICEP�	� = − 27
16	2 + 55

32	4 − 27
32	5 + O�	6� , �42�

wICEP�	� = 27
64	3 + O�	6� . �43�

These results should be compared to the previous derivations
of Dukhin and co-workers,14–16 in which only the leading-
order terms to O�	4� had been obtained. An important point
to be made here is the O�	2� decay of the ICEP relative
velocity, as seen in Eqs. �41� and �42�. This dependence is a
direct consequence of the leading-order stresslet flow gener-
ated by a single sphere undergoing ICEP �Ref. 19� and is
significantly slower than the O�	4� decay of the interactions

from DEP, as found in Fig. 4 and Eqs. �36�–�39�. We can
therefore expect ICEP to dominate the motion when particle
polarizability is significant.

Finally, results for the total relative motion including
both DEP and ICEP were obtained by superimposing the
results of Figs. 4 and 5 and are shown in Fig. 6. In this case,
the asymptotic expansions for the various coefficients ob-
tained by the method of reflections are given by

l�	� = − 9
32	4 − 3

128	5 + O�	6� , �44�

m�	� = 9
16	2 − 9

32	4 + 3
8	5 + O�	6� , �45�

FIG. 4. Dimensionless coefficients �a� lDEP�	�, �b� mDEP�	�, �c� nDEP�	�, and
�d� wDEP�	� in the general expressions �19� and �20� for the DEP linear and
angular velocities UDEP and �DEP as functions of 	=2a /R� �0,1�. The
plots show results from the boundary-element calculations of Sec. III B,
from the method of twin multipole expansions31 �cf. the Appendix�, in
which 20 terms were retained in the expansions, and from the method of
reflections �Refs. 28 and 29� �Eqs. �36�–�39��.

FIG. 5. Dimensionless coefficients �a� lICEP�	�, �b� mICEP�	�, �c� nICEP�	�,
and �d� wICEP�	� in the general expressions �19� and �20� for the ICEP linear
and angular velocities UICEP and �ICEP as functions of 	=2a /R� �0,1�. The
plots show results from the boundary-element calculations of Sec. III B,
from the method of twin multipole expansions �Ref. 31� �cf. the Appendix�,
in which 20 terms were retained in the expansions, and from the method of
reflections �Refs. 28 and 29� �Eqs. �40�–�43��.
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n�	� = − 27
16	2 + 45

32	4 − 21
32	5 + O�	6� , �46�

w�	� = 27
64	3 + O�	6� . �47�

A quick comparison of Figs. 5 and 6 clearly shows that the
motion is strongly dominated by ICEP, due to the stronger
O�	2� dependence of the ICEP relative velocity. Note that
while the O�	2� decay of the ICEP velocity is a general
result, the magnitude of that velocity would be expected
to be weaker if the particles were not ideally polarizable

�for example, if they were dielectrics�. There could therefore
be circumstances under which DEP dominates ICEP at short
separation distances.

IV. TRAJECTORIES AND FAR-FIELD FLOW
DISTURBANCE

We now discuss the nature of the motions that result
from these interactions. Figure 7 shows the radial component

of the relative velocity U · R̂ between the two spheres as a
function of the angle � made between the direction of the
external field and the line of center between the two spheres:

E0 · R̂=E0 cos �. This radial velocity is easily evaluated by
means of Eqs. �16� and �19� as

U · R̂

U0
= �2l�	� + n�	��cos2 � + m�	� , �48�

where U0= ��a /��E0
2 is the velocity scale for the DEP and

ICEP motions. In agreement with our observations of Sec.
III B, the ICEP motion is found to strongly dominate the
particle motions at the intermediate separation distance of
R /a=2.5, at which the results of Fig. 7 were calculated; both
motions, however, almost always have the same direction
radially �expect in a very small region near the angle at

which U · R̂ switches sign�. In particular, the relative radial
velocity is negative for low values of �, which corresponds
to particle attraction, but becomes positive for ��0.9 rad
�or 51.5°�, beyond which the particles are repelled. The at-
traction and the repulsion are the strongest when the particles
are aligned with or perpendicular to the direction of the ex-
ternal field, respectively ��=0 and �=� /2�.

The pair dynamics resulting from these interactions are
easy to anticipate: particles will attract along the direction of
the electric field, pair up, and separate in the transverse di-
rection. This is illustrated is Fig. 8, showing a typical trajec-

FIG. 6. Dimensionless coefficients �a� l�	�, �b� m�	�, �c� n�	�, and �d� w�	�
in the general expressions �19� and �20� for the total linear and angular
velocities U and � �including both DEP and ICEP� as functions of
	=2a /R� �0,1�. The plots show results from the boundary-element calcu-
lations of Sec. III B, from the method of twin multipole expansions
�Ref. 31� �cf. the Appendix�, in which 20 terms were retained in the expan-
sions, and from the method of reflections �Refs. 28 and 29� �Eqs. �44�–�47��.

FIG. 7. Radial component U · R̂ of the relative velocity between the two
spheres scaled by the velocity scale U0= ��a /��E0

2 as a function of the angle
� made between the external field and the line of centers of the two spheres
�E0 · R̂=E0 cos ��. The radial velocity was calculated using Eq. �48� for
	=0.8 �or, equivalently, R /a=2.5�. The plot shows the velocities arising
from DEP and ICEP, as well as the total velocity when both effects are
present.
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tory for the motion of the two spheres. This trajectory is
qualitatively very similar to those obtained previously in the
case of rodlike particles22 �note, however, that for high-
aspect ratio rods, DEP interactions are significantly weaker
than for spheres as they scale with the rod thickness22 and
can be safely neglected with respect to ICEP�. When par-
ticles meet head on �or nearly head on� in the direction of the
field, long-lasting pairing may be expected and may possibly
result in chaining in suspensions of many particles. In addi-
tion, we can also expect that an initially spherical cloud of
such particles placed in an electric field will compress in the
direction of the field and stretch in the perpendicular direc-
tions as a result of these interactions.

We finish by commenting on the far-field decay of the
fluid velocity away from a pair of spheres subject to DEP and
ICEP. Denote by x a position vector emanating from the
center point between the two spheres. For two nonpolariz-
able spheres with fixed and uniform zeta potential � under-
going standard electrophoresis, the leading-order term in an
expansion of the fluid velocity far away from the spheres
�i.e., when R� �x�� can be shown to be

uEP�x� �
��

�
	a

r

3

�3x̂x̂ − I� · E0, �49�

where r= �x� and x̂=x /r. This electrophoretic disturbance
flow is a potential flow �not only in the far field� and decays
fairly rapidly like r−3 away from the two spheres. The far-
field disturbance flows induced by DEP and ICEP are, how-
ever, qualitatively different, as they are no longer potential
and have a slower far-field decay. Their leading-order terms
can be shown to be

uDEP�x� �
1

2

�R

�
	a

r

2

�x̂R̂ + R̂x̂ − �x̂ · R̂�

��I + 3x̂x̂�� · F�	,R̂�:E0E0, �50�

uICEP�x� �
9

4

�a

�
	a

r

2

x̂�I − 3x̂x̂�:E0E0, �51�

where F�	 , R̂� is given by Eq. �18�. Unlike uEP�x�, these two
flows are now rotational. They are both Stokes dipole flows
in the far field and decay slowly like r−2. Note that because

F�	 , R̂�=O�	4�, in general, we can expect to have
�uDEP�x��� �uICEP�x��, i.e., the fluid flow will be dominated
by ICEP.

V. CONCLUDING REMARKS

We have shown that particles undergoing electrophoresis
in a viscous electrolyte may also be subject to two other
types of nonlinear electrokinetic effects.40 The first effect,
termed DEP by analogy to the motion of a single particle in
a nonuniform electric field,11 is a consequence of the distor-
tion of the external electric field when several particles are
present in suspension and results in nonzero electric forces
scaling quadratically with the applied field. In particular,
these forces should arise even for nonpolarizable particles.
The second effect, termed ICEP,19 occurs when the particles
are able to polarize and results from the flows driven inside
the nonuniform charge clouds that form around the particle
surfaces. These effects �and, in particular, DEP� may have
been overlooked in the past in studies of electrophoresis on
the basis that they scale quadratically with the applied field
and should therefore be negligible in weak fields. However, a
simple scaling argument shows otherwise.11 While the scale
for the classical electrophoretic velocity of a single particle is
O���E0 /��, the scale for the DEP and ICEP relative veloci-
ties is O��aE0

2 /��; the latter will therefore become signifi-
cant when aE0 /�=O�1�, which may occur for moderate par-
ticle sizes or moderate field strengths, as well as for particles
with very low native zeta potentials.

As we have shown, both DEP and ICEP result in relative
motions, and the relative velocities between a pair of identi-
cal ideally polarizable spheres were calculated with good ac-
curacy for a wide range of separation distances, using three
different methods. In particular, we found that both DEP and
ICEP cause the particles to be attracted when they are
aligned with the external field and repelled when they are
aligned in a perpendicular direction. This results in pairing
dynamics by which particles attract along the direction of the
field, pair up, and separate in the transverse direction. Even
though both DEP and ICEP contribute to these motions,
ICEP was found to strongly dominate the motion in the case
of ideally polarizable particles, due to its slower decay with
separation distance as O�R−2� vs O�R−4� for DEP interac-
tions. Another interesting consequence of these effects is the
qualitatively different nature of the disturbance flow field
away from a pair of particles, which is no longer potential as
in the case of classical electrophoresis and decays more
slowly like O�r−2� with the distance r from the location of
the sphere pair.

While our calculations have provided accurate results for
the particle motions down to very short separation distances
�with errors of less than 1% at R /a=2.05 with the method of
twin multipole expansions�, they are all based on far-field

FIG. 8. Typical trajectories of two spheres undergoing DEP and ICEP in an
electric field E0. The two spheres are attracted in the direction of the field,
pair up, and then separate in the transverse direction. The arrows indicate the
direction of motion.
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descriptions of the hydrodynamics and cannot capture pre-
cisely the dynamics when the particles are almost at contact.
In this case, a lubrication theory could be developed to
complement the results presented in this work, in the spirit of
the analysis of Yariv and Brenner42 for classical electro-
phoresis. Note, however, that the coupling between the elec-
tric and flow problems for DEP and ICEP is more complex
than for standard electrophoresis and would make any lubri-
cation analysis significantly more involved. In addition, we
can expect the thin-double-layer assumption used here to
break down when the separation distance between the sphere
surfaces becomes of the order of the Debye length �or thick-
ness of the screening layer�: in this case, a different analysis
accounting for diffuse charge dynamics around the particles
would be required. While such an analysis was recently pro-
posed by Yariv and Miloh43 to describe ICEP around a single
sphere, it has yet to be attempted to model interactions be-
tween particles.

APPENDIX: METHOD OF TWIN MULTIPOLE
EXPANSIONS

The method of twin multipole expansions is a systematic
generalization of the method of reflections28,29 and was de-
scribed by Jeffrey30 in the case of Laplace interactions and
by Jeffrey and Onishi31 in the case of Stokes interactions. For
Laplace interactions, it consists in seeking the electric poten-
tial in the vicinity of sphere � as an expansion in growing
and decaying spherical harmonics,

�����x� = �0�x� + �
n=0

�

�
m=0

1 ��̃nm
� 	 r�

a

−n−1

+ �̂nm
� 	 r�

a

n�Pn

m�cos ���cos m� , �A1�

where r� is the distance from position x to the center of
sphere � and the angles �� and � are defined in Fig. 1. Pn

m

denote the associated Legendre polynomials44 and �̃nm
� and

�̂nm
� are unknown constant coefficients to be determined. To

obtain these coefficients, we require that the two expansions
��1� and ��2� match far away from either sphere, which can
be shown to yield the following condition:30

�̂nm
��� = 	 a

R

n

�
l=m

� 	 l + n

n + m

	 a

R

l+1

�̃lm
�3−��. �A2�

In addition, we need to make sure that the no-flux boundary
condition n� ·������x�=0 is enforced on the surface of
sphere �. Noting that n� ·��0

����x�=−n� ·E0 can be expanded
on the basis of surface harmonics as follows:

n� · ��0
����x� = − E
P1

0�cos ��� + �− 1��−1

�E�P1
1�cos ���cos � , �A3�

where E
 and E� are the components of the applied field E0

in the directions parallel and perpendicular to the line of
centers, respectively, and using the orthogonality property

of spherical harmonics, it can be shown that the no-flux
boundary condition on the surface of sphere � is equivalent
to

aE

n1
m0 + �− 1��aE�
n1
m1 − �n + 1��̂nm
� + n�̃nm

� = 0,

�A4�

where 
ij denotes the Kronecker delta. Equations �A2� and
�A4� constitute a linear system for the expansion coefficients

�̃nm
� and �̂nm

� , which can be inverted numerically after trun-
cation of the sum in Eq. �A2�. For the calculations shown on
Fig. 3, 50 terms were retained in the sum.

After the coefficients �̃nm
� and �̂nm

� for the electric po-
tential have been obtained, the dielectrophoretic forces on
the spheres can be calculated directly using a method pro-
posed by Washizu,36 to which the reader is referred for de-
tails. Washizu36 also explained how the coefficients can be
used to obtain an expansion for the electric field. Once the
electric field and potential are known on the sphere surfaces,
they can be multiplied to yield the slip velocity us�x� �Eq.
�7��, which itself can then be re-expanded on the basis of
surface harmonics.

A similar method, also based on twin multipole expan-
sions, can then be applied to determine the fluid and particle
motions. The method was described in detail by Jeffrey and
Onishi31 for the determination of the mobility of a pair of
rigid spheres, and for brevity is not repeated here. It consists
again in representing the flow variables �fluid velocity and
pressure� using Lamb’s general solution for Stokes flow28 as
a sum of two expansions in decaying harmonics emanating
from both sphere centers. Scalar equations for the coeffi-
cients in the expansions are then obtained by application of a
matching condition and of the boundary condition �Eq. �12��,
where the slip velocity was obtained as described above from
Eq. �7� and from the expansions for the surface electric field
and potential. Together with force and torque balances on the
spheres, these equations constitute a closed linear system
for the velocity and pressure expansion coefficients, which
is inverted after truncation of the sums. This allows the
determination of the particle linear and angular velocities
�Figs. 4–6�.
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