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The spatial and orientational distribution in a dilute active suspension of non-Brownian
run-and-tumble spherical swimmers confined between two planar hard walls is
calculated theoretically. Using a kinetic model based on coupled bulk/surface
probability density functions, we demonstrate the existence of a concentration wall
boundary layer with thickness scaling with the run length, the absence of polarization
throughout the bulk of the channel, and the presence of sharp discontinuities in the
bulk orientation distribution in the neighbourhood of orientations parallel to the wall
in the near-wall region. Our model is also applied to calculate the swim pressure in
the system, which approaches the previously proposed ideal-gas behaviour in wide
channels but is found to decrease in narrow channels as a result of confinement.
Monte Carlo simulations are also performed for validation and show excellent
quantitative agreement with our theoretical predictions.
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1. Introduction

The propensity of confined self-propelled particles to accumulate at boundaries is
a trademark of active matter and has been reported in many experiments on bacterial
suspensions (Berke et al. 2008; Gachelin et al. 2013; Figueroa-Morales et al. 2015)
as well as simulations based on various models (Hernández-Ortiz, Stoltz & Graham
2005; Elgeti & Gompper 2013; Li & Ardekani 2014). Several disparate mechanisms
have been proposed in explanation, including wall hydrodynamic interactions (Berke
et al. 2008) and scattering due to collisions with the walls (Li et al. 2011), though
recent theoretical efforts have shown that the mere interplay of self-propulsion,
stochastic processes and confinement is sufficient to explain accumulation (Lee 2013;
Elgeti & Gompper 2015; Ezhilan & Saintillan 2015). With few exceptions, however,
these models have necessitated particle diffusion, which in reality is nearly negligible
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in bacterial suspensions, where stochasticity in the dynamics takes instead the form
of run-and-tumble random walks (Berg 1993).

An understanding of the distribution of active particles in confinement is especially
critical for determining the mechanical force per unit area exerted by the suspension
on the boundaries, or the so-called ‘swim pressure’. This novel concept, which has
received much scrutiny recently, describes the force that must be applied on containing
osmotic walls to keep self-propelled particles confined. Models based on the virial
theorem (Takatori, Yan & Brady 2014; Yang, Manning & Marchetti 2014; Winkler,
Wysocki & Gompper 2015) and on direct calculations of the wall mechanical pressure
(Solon et al. 2015b) in infinite or semi-infinite collections of spherical swimmers have
all arrived at a simple ideal-gas law Πi for the swim pressure in the limit of infinite
dilution:

Πi = nζDt = nζ
V2

0

3λ
, (1.1)

where n is the mean number density, ζ is the viscous drag coefficient of a particle and
Dt = V2

0/3λ is the long-time translational diffusivity of an unconfined run-and-tumble
swimmer expressed in terms of its speed V0 and mean tumbling rate λ (Berg 1993).
Equation (1.1) and its extension to finite concentrations have proven useful to explain
motility-induced phase separation in suspensions of self-propelled colloids (Takatori
et al. 2014; Takatori & Brady 2015), though its general validity as a thermodynamic
equation of state for the pressure of active matter remains controversial (Mallory et al.
2014; Ray, Reichhardt & Olson Reichhardt 2014; Ginot et al. 2015) and appears to
be limited to unconfined spherical particles (Yang et al. 2014; Solon et al. 2015a,b).

In this work, we analyse the simple case of a dilute suspension of athermal
run-and-tumble spherical swimmers confined between two parallel flat plates. We
propose in § 2 a kinetic model based on two probability density functions describing
the spatial and orientational distribution of the particles inside the gap and at the walls,
which are coupled via flux conditions and only account for the effects of swimming
and orientation decorrelation by tumbling. Further, our model implicitly captures
hard-wall steric interactions without resorting to a soft potential to describe wall
collisions as in previous theories (Solon et al. 2015a,b). A semi-analytical solution
method is outlined in § 3, which provides the full probability density functions and
allows for a direct calculation of the mechanical swim pressure exerted on the walls
in terms of the polarization of the surface distributions. Results for the distributions
and swim pressure are presented in § 4, where they are shown to compare very
favourably with Monte Carlo simulations.

2. Problem definition and theoretical model

2.1. Problem formulation
As a minimal model for an active suspension in confinement, we consider a dilute
collection of self-propelled spherical particles confined between two infinite parallel
plates separated by a distance 2H (see figure 1). The swimmers are non-Brownian and
simply perform a run-and-tumble random walk: straight runs of duration τ at constant
velocity V0 along the unit director p alternate with instantaneous tumbling events
causing random and uncorrelated reorientations of p. The time τ between tumbles is
an exponentially distributed random variate with mean λ−1, where the tumbling rate λ
is assumed to be independent of position and orientation. To elucidate the interplay
between run-and-tumble dynamics and confinement, we focus on the dilute limit and
entirely neglect interparticle interactions. Particle–wall interactions are purely steric: as
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FIGURE 1. Problem definition: run-and-tumble particles are confined between two flat
plates separated by 2H. The distribution of particles is a function of z and q = p · ẑ =
cos θ ∈ (−1, 1). Orientations pointing towards the top and bottom walls are parametrized
by q↑ = q and q↓ =−q respectively, both defined in (0, 1).

a swimmer meets one of the two surfaces, the normal component of its swimming
motion is cancelled by a hard-core repulsive force, causing it to stay at and push
against the wall until a subsequent tumbling event reorients it into the bulk. Tumbling
events occurring at the walls can lead to reorientation into the wall or into the bulk,
so that a particle at a surface may need to undergo more than one tumble before it
is able to escape.

There are only two length scales in the problem: the mean run length `r = V0λ
−1

and the channel width 2H. We define their ratio as the Péclet number Pe= `r/2H =
V0/2λH, where the two limits Pe → 0 and Pe → ∞ describe weak and strong
confinement respectively. Due to the symmetry of the problem, the distribution of
particles in the channel only depends on two degrees of freedom: the wall-normal
coordinate z ∈ (−H, H) and the wall-normal component of the particle director
q = p · ẑ = cos θ ∈ (−1, 1). It is convenient to distinguish particles pointing towards
the top and bottom walls, and to this end we divide the unit sphere of orientations
into two hemispheres and define two distinct orientation coordinates q↑ = q ∈ (0, 1)
and q↓ = −q ∈ (0, 1) for particles pointing up or down respectively, as depicted in
figure 1.

The distribution of particles in the channel is then fully described by a bulk
probability density function ψ(z, q) and two surface probability density functions
ψ↑s (q

↑) and ψ↓s (q
↓), which are only defined over half of the orientations since the

surfaces cannot sustain a concentration of particles pointing towards the bulk. By
symmetry, we expect

ψ(z,−q)=ψ(−z, q), ψ(z, q↑)=ψ(−z, q↓) and ψ↑s (q
↑)=ψ↓s (q↓) (2.1a−c)

for q↑ = q↓. Next, we describe the coupled bulk/surface conservation equations
satisfied by these distributions, together with the appropriate boundary conditions.

2.2. Bulk conservation equation
The steady bulk probability density function ψ(z, q) satisfies the conservation equation

V0q
∂

∂z
ψ(z, q)=−λψ(z, q)+ 1

2

∫ 1

−1
λψ(z, q′) dq′. (2.2)
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The left-hand side describes transport along z due to self-propulsion. Run-and-tumble
dynamics is captured by the right-hand side, where the first term accounts for
depletion due to swimmers tumbling away from orientation q and the second term
for restoration due to swimmers tumbling from orientations q′ into q. It is also useful
to define the orientational moments of order j of the bulk probability density function
on the full sphere and on the upper/lower hemispheres of orientations as

Mj(z)=
∫ 1

−1
qjψ(z, q) dq and M↑↓j (z)=

∫ 1

0
(q↑↓)jψ(z, q↑↓) dq↑↓, (2.3a,b)

and we note that the zeroth, first and second moments correspond to the concentration,
polarization and nematic alignment fields:

c(z)=M0(z), m(z)=M1(z), S(z)=M2(z), (2.4a−c)

c↑↓(z)=M↑↓0 (z), m↑↓(z)=M↑↓1 (z), S↑↓(z)=M↑↓2 (z). (2.5a−c)

By symmetry, it is straightforward to see that full moments of even order are even
functions of z whereas those of odd order are odd functions. With these notations,
the bulk conservation equation (2.2) simplifies to

`rq
∂

∂z
ψ(z, q)=−ψ(z, q)+ 1

2
c(z). (2.6)

Taking the zeroth and first orientational moments of (2.6) and applying symmetry
conditions immediately shows that the polarization is zero and the nematic alignment
is uniform across the channel:

m(z)= 0 and S(z)= S0 ∀z ∈ (−H,H), (2.7a,b)

where S0 is a constant independent of z.

2.3. Surface conservation equations
Similarly, conservation equations for the steady surface probability density functions at
the walls can be written. We first define the surface concentration and polarization as

cs =
∫ 1

0
ψ↑↓s (q↑↓) dq↑↓ and ms =

∫ 1

0
q↑↓ψ↑↓s (q↑↓) dq↑↓, (2.8a,b)

and note that the values of cs and ms are the same at both walls. With these notations,
the conservation equation at the upper wall (z=+H) reads

V0q↑ψ(H, q↑)= λ [ψ↑s (q↑)− 1
2 cs
]
, (2.9)

and a similar equation holds at z = −H. The right-hand side in (2.9) describes
tumbling processes at the wall. The left-hand side, on the other hand, captures the
flux of particles that enter the surface from the bulk by self-propulsion, and is
therefore proportional to the bulk probability density function ψ(H, q↑) next to the
wall. Evaluating the zeroth and first moments of (2.9) yields simple relations between
cs and ms and the values of the bulk moments in the vicinity of the wall:

cs = 2`rm↑(H), ms − 1
4 cs = `rS↑(H). (2.10a,b)

781 R4-4



Run-and-tumble particles in confinement

2.4. Boundary condition and particle number conservation
Equation (2.9) can be interpreted as a boundary condition for orientations pointing into
the wall. For orientations pointing away from the wall, the swimming flux away from
the wall must be balanced by tumbling of particles from the surface towards the bulk.
Simply stated, particles on the surface that tumble to an orientation pointing into the
bulk are transported away by self-propulsion. This leads to the additional condition

V0q↓ψ(H, q↓)= 1
2λcs or `rq↓ψ(H, q↓)= 1

2 cs. (2.11a,b)

As cs is constant and finite, this condition suggests divergence and discontinuity of
the bulk probability density function for orientations parallel to the wall (q↓→ 0), as
will indeed be verified in our analytical solution and stochastic simulations. Taking
the zeroth and first moments of (2.11) provides the two additional relations

cs = 2`rm↓(H), cs = 4`rS↓(H). (2.12a,b)

Finally, the above system of equations for the bulk and surface distributions is
supplemented by a constraint on the total number of particles in the channel:

2cs +
∫ H

−H
c(z) dz=N, (2.13)

where N is the particle number in a vertical slice of unit horizontal cross-section.

3. Method of solution and swim pressure calculation

3.1. Integral equation for the moments
We now outline a solution method for the system described in § 2. As a first step, we
derive an integral equation relating the bulk orientational moments to the concentration
field. The bulk concentration equation (2.6) can be viewed as a linear inhomogeneous
ordinary differential equation for ψ(z, q), where q is a parameter. We solve it by
the method of variation of constants, treating orientations q↑ and q↓ separately. After
applying the boundary condition (2.11), we obtain a general expression for the bulk
density function:

ψ(z, q↑↓)= cs

2`r q↑↓
exp

[
−(H ± z)
`r q↑↓

]
±
∫ z

∓H

c(z′)
2`r q↑↓

exp
[
∓(z− z′)
`r q↑↓

]
dz′. (3.1)

It should be noted that the bulk and surface concentrations c(z) and cs both appear on
the right-hand side and are still unknown. However, (3.1) shows that their knowledge
entirely specifies the bulk distribution ψ(z, q). The bulk moments of order j on both
hemispheres of orientations are immediately obtained by integration:

M↑↓j (z)=
cs

2`r
Ej+1

[
H ± z
`r

]
±
∫ z

∓H

c(z′)
2`r

Ej+1

[
±(z− z′)

`r

]
dz′, (3.2)

where Ej is the exponential integral function defined as

Ej(z)=
∫ 1

0
uj−2 exp

(
− z

u

)
du. (3.3)

Finally, the moment of order j on the full sphere of orientations can be shown to be

Mj(z)= cs

2`r

(
Ej+1

[
H + z
`r

]
+ Ej+1

[
H − z
`r

])
+
∫ H

−H

c(z′)
2`r

Ej+1

[∣∣∣∣z− z′

`r

∣∣∣∣] dz′. (3.4)
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3.2. Concentration field and solution procedure
Setting j= 0 in (3.4) immediately provides an integral equation for the yet unknown
concentration profile:

c(z)= cs

2`r

(
E1

[
H + z
`r

]
+ E1

[
H − z
`r

])
+
∫ H

−H

c(z′)
2`r

E1

[∣∣∣∣z− z′

`r

∣∣∣∣] dz′. (3.5)

Dividing through by cs, we obtain an equation for c(z)/cs that can be solved
numerically. For finite `r, we find that an approximate solution is easily obtained
iteratively by casting (3.5) in the form ck+1(z)/cs= f [ck(z)/cs], starting with an initial
guess which we take to be c0(z) = 0. In strong confinement (Pe & 10), the solution
converges in O(20) iterations, though more iterations are required in wider channels.

To complete the solution for the concentration field, the value of the surface
concentration cs must be calculated. Having previously obtained c(z)/cs, it is easily
evaluated by recasting the constraint (2.13) as

cs =N
[

2+
∫ H

−H

c(z)
cs

dz
]−1

. (3.6)

Knowledge of c(z) and cs then directly provides all of the remaining variables. The
bulk probability density function is given by (3.1), while the bulk partial and full
moments can be calculated using (3.2) and (3.4). Finally, the surface orientation
distribution is provided by (2.9) and the surface polarization by (2.10b). Solutions
obtained by this method are presented in § 4, where excellent agreement with results
from Monte Carlo simulations will be shown.

3.3. Swim pressure calculation
The above formulation provides a direct way of estimating the swim pressure in the
system, which is simply the force per unit area exerted by the particles at the walls
as they push on the surface. Specifically, the normal component of the motion of
each particle at the upper wall is resisted by a force ζV0q↑, where ζ is the viscous
drag coefficient of one particle (Takatori et al. 2014). Knowing the surface probability
density function ψ↑s , an expression for the swim pressure is then easily found as

Πs =
∫ 1

0
ζV0q↑ψ↑s (q

↑) dq↑ = ζV0ms, (3.7)

where ms is the surface polarization. Combining (2.10b) and (2.12b) to solve for ms
yields a simple relation between the swim pressure and the second moment S0 of the
bulk distribution function:

Πs = ζV0`r[S↑(H)+ S↓(H)] = ζ V2
0

λ
S(H)= ζ V2

0

λ
S0. (3.8)

In bulk unconfined systems, previous models have led to the ideal-gas pressure Πi
of (1.1), which contains no information on particle orientations due to isotropy but
follows the same scaling as (3.8). To compare the two predictions, we define a
dimensionless pressure as the ratio of (3.8) and (1.1):

P = Πs

Πi
= 3ms

n`r
= 3S0

n
, (3.9)
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FIGURE 2. Concentration profiles across the channel for various values of Pe= `r/2H: (a)
full concentration c(z) and (b) partial ‘up’ concentration c↑(z). The solid lines show the
semi-analytical solution of § 3 and the symbols are Monte Carlo simulation results.

where n= N/2H is the mean number density in our system. Here, P − 1 quantifies
the departure from the ideal-gas swim pressure. In an infinitely wide channel (Pe→0),
the bulk distribution at the centreline is expected to be isotropic, implying S0 = n/3
and therefore P→ 1. This will be confirmed in our numerical results in § 4, where
we also show that P deviates from 1 when Pe> 0 as a result of confinement.

4. Results and comparison with simulations

4.1. Simulation method
To validate our model, we also performed Markov-chain Monte Carlo simulations
of run-and-tumble swimmers between two hard walls. During a run of duration τ ,
the swimmer trajectory simply evolves as x(t + 1t) = x(t) + V0 p1t, where 1t is
a short time step. Each run is then followed by a tumbling event, where the new
orientation vector p is picked randomly on the unit sphere. The time τ between
two consecutive tumbles is drawn from an exponential distribution with cumulative
distribution function F(τ )= 1− exp[−λτ ]. When a swimmer meets a wall, it remains
there and continues to tumble until it reorients towards the bulk and swims away.
Time-averaged bulk and surface probability density functions were extracted from
orientational and spatial histograms, and convergence was checked with respect to 1t
and to the duration of the simulation.

4.2. Theoretical and numerical results
Solutions for the bulk concentration profile are depicted in figure 2, where both
the full concentration c(z) and the partial ‘up’ concentration c↑(z) are plotted for
various values of the Péclet number, which measures the degree of confinement. The
full concentration profiles in figure 2(a) show significant accumulation at the walls,
with wall boundary layers whose thickness scales with `r. An interesting and unique
feature of non-interacting and non-aligning spherical run-and-tumble particles is that
accumulation occurs in the absence of polarization, and m(z) is found to be strictly
zero throughout the channel, as already derived in (2.7). A non-zero polarization
would indeed lead to a net flux of particles in the wall-normal direction, which
cannot happen in a confined athermal system, unlike in Brownian suspensions where
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FIGURE 3. Bulk probability density at the top wall for (a) orientations pointing away
from the wall and (b) orientations pointing towards it. (c) Surface probability density at
the top wall as a function of q↑. The solid lines show the semi-analytical solution of § 3
and the symbols are Monte Carlo simulation results.

this flux can be balanced by diffusion (Ezhilan & Saintillan 2015). The profiles also
show the presence of a singularity in c(z) at the walls, which is a direct consequence
of the boundary condition (2.11) and is also obvious from the solution (3.5) where
E1(0) diverges. Concentration singularities were also predicted by Elgeti & Gompper
(2015), though their model did not capture orientation distributions. As confinement
becomes significant and Pe increases, the bulk concentration decreases throughout the
channel to reach nearly zero at Pe = 200, indicating that strongly confined particles
spend most of their time at the boundaries. Excellent quantitative agreement is
obtained between theory and Monte Carlo simulations.

Figure 2(b) also shows the partial ‘up’ concentration obtained by only counting
particles pointing towards the top wall. The asymmetry of the profiles and the
singularity at the bottom wall indicate that on average there are more particles
pointing away from the wall than towards it inside the wall accumulation layers.
However, in order to satisfy no net polarization in the bulk, this implies that those
particles pointing towards the wall are more strongly polarized than those pointing
away. This point is confirmed in figure 3(a,b), showing the orientation distributions
in the bulk in the vicinity of the top wall for orientations pointing away from and
towards the wall. Figure 3(a) confirms the divergence of the bulk probability density
in the neighbourhood of orientations parallel to the wall (q↓→ 0), as expected from
boundary condition (2.11), which is also captured by the simulations. The presence
of this discontinuity can be rationalized as follows: particles that leave the surface at
an orientation q↓ & 0 swim nearly parallel to the surface and therefore remain there
much longer than particles leaving in other orientations. The distribution of particles
pointing towards the wall in figure 3(b) shows no such singularity, but exhibits a
weak finite peak at a critical value of q↑ for an intermediate range of Péclet numbers
between 5 and 50, whose physical origin remains unclear. The orientation distribution
ψ↑s (q

↑) of particles on the top wall is shown in figure 3(c) and shows a preferential
alignment normal to the wall rather than parallel to it. However, this distribution
becomes nearly isotropic under very strong confinement (Pe= 1000), for reasons that
we elucidate below.

Taking moments of ψ↑s (q
↑) provides the surface concentration cs and surface

polarization ms, which are plotted versus the Péclet number in figure 4(a,b). Both
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FIGURE 4. (a) Surface concentration cs, (b) surface polarization ms and (c) dimensionless
pressure P as functions of the Péclet number Pe= `r/2H. The solid lines show the semi-
analytical solution of § 3 and the symbols are Monte Carlo simulation results.

quantities increase with increasing confinement, but asymptote as Pe → ∞. The
asymptote for cs is N/2, meaning that in very narrow channels the particles spend
all of their time at the boundaries; indeed, the time 2H/V0 it takes them to cross the
gap is infinitesimal compared with the mean run time λ−1. This is also consistent
with the decrease in the bulk concentration seen in figure 2(a). In this limit, particles
tumbling away from one wall reach the other wall nearly instantaneously, leading to
an isotropic surface orientation distribution in agreement with figure 3(c), hence the
asymptote of N/4 for the wall polarization.

Lastly, the dependence of the dimensionless swim pressure P on the degree of
confinement is illustrated in figure 4(c). In the limit of weak confinement (H � `r
or Pe→ 0), the swim pressure is seen to tend to the ideal-gas law of (1.1) in both
our model and simulations: P→ 1 or Πs→Πi. This corresponds to the limit of a
single wall where the gap width 2H plays no role, and validates the results of previous
studies in infinite or semi-infinite systems for which the expression for Πi was first
derived (Takatori et al. 2014; Solon et al. 2015b). Confinement, however, causes a
decrease in the swim pressure, which in fact tends to zero for fixed n in very narrow
gaps. The high-Pe asymptote for ms describes the limiting behaviour:

P→ 3
4

Pe−1, i.e. Πs→ 3
4

Pe−1Πi = nHζV0

2
= NζV0

4
(4.1)

as Pe→∞ (or H→ 0), which corresponds to N/2 particles pushing with an average
force of ζV0/2 against each wall. The decrease in pressure and the details of the
asymptote agree with the previous two-dimensional results of Yang et al. (2014),
who also verified them in numerical simulations of self-propelled disks. They are
also consistent with the study of Ray et al. (2014), who analysed the force on two
nearby parallel plates in an active particle bath and proposed that the pressure inside
the gap in a one-dimensional system with constant run length varies as Πi/(1+ Pe).

4.3. Summary and discussion
We have presented a simple continuum model for a dilute suspension of spherical
run-and-tumble particles confined between two hard walls and interacting via purely
steric forces with the walls. The model improves upon our previous theory for

781 R4-9



B. Ezhilan, R. Alonso-Matilla and D. Saintillan

confined Brownian suspensions (Ezhilan & Saintillan 2015) by allowing us to address
the limit of zero temperature within a continuum framework and by incorporating
a more realistic treatment of surface interactions and exchange processes between
surfaces and the bulk. This description also provides a direct and simple way of
calculating the mechanical swim pressure exerted on the walls and serves as a
complementary approach to the work of Solon et al. (2015b), where a continuous
description of the same problem using a soft potential for wall interactions was
used to calculate the pressure. We have outlined an elegant approach to derive
a semi-analytical solution for the probability density functions, and demonstrated
excellent quantitative agreement between our model and results from discrete Monte
Carlo simulations.

Our theoretical predictions and simulation results have highlighted several striking
features of confined suspensions of run-and-tumble particles, namely the presence
of a singularity and discontinuity in the bulk probability density function for
orientations nearly parallel to the walls in the near-wall region, and the existence
of a concentration boundary layer of thickness of the order of `r that actually
diverges at the walls. Our pressure calculations were shown to match the recently
proposed ideal-gas equation of state of active matter in wide channels, thus further
validating this ideal-gas law and confirming the prediction that the precise nature of
particle–wall steric interactions has no impact on the wall mechanical pressure for
spherical particles (Solon et al. 2015b). We demonstrated, however, that confinement
leads to departures from this ideal behaviour and specifically to a decrease in the
swim pressure, which in fact vanishes in the limit of an infinitely narrow gap when
the mean number density is held fixed. In this case, we found that swimmers spend
all of their time at the boundaries, which provides the basis for previous models of
strongly confined systems that only account for the surface distribution of swimmers
(Fily, Baskaran & Hagan 2014).

While capturing the salient features of confined active suspensions, the problem
under consideration remained minimal. Yet, the kinetic model presented here could be
further modified to incorporate other effects and provide a more realistic description
of biological or synthetic active systems. In particular, many active particles are
rod-shaped and therefore also incur an aligning torque as they interact with boundaries.
Recent theoretical work has shown that the wall pressure is modified in that case
and becomes dependent upon the details of particle–wall interactions (Solon et al.
2015a; Wysocki, Elgeti & Gompper 2015). In addition, experiments show that the
surface-to-bulk tumbling of biological swimmers as well as certain types of synthetic
swimmers is not uncorrelated but rather results in the preferential release of the
particles near a specific angle (Volpe et al. 2011; Kantsler et al. 2013; Molaie et al.
2014). Incorporation of such details in our model is straightforward and would
modify the distribution of particles near the walls, with unexpected consequences for
the mechanical pressure. Our basic model, validated here in the dilute limit, could
also be modified to account for hydrodynamic couplings and to study the structure
of the self-generated flows and collective dynamics of interacting active particles
in confinement. In more complicated problems such as the ones described above, a
complete solution for the bulk and surface probability density functions may not be
tractable semi-analytically. Orientational moment equations with a suitable closure
model (Saintillan & Shelley 2013; Ezhilan & Saintillan 2015) probably would not
perform well either because of the near-wall singularities in the bulk probability
density function as well as complications arising from having to develop governing
equations and closure approximations for the partial moments as opposed to the full
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ones. Extension of the present model to non-planar boundaries, whether concave or
convex, is not straightforward either but would be of great interest for the theoretical
description of active particle transport in complex geometries or of their interaction
with and transport of passive payloads. This rich avenue is the focus of our current
work.
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