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The nonlinear dynamics of uncharged ideally polarizable spheres freely suspended
in a viscous electrolyte in a uniform electric field are analysed using theory and
numerical simulations. When a sphere polarizes under the action of the field, it
acquires a non-uniform surface charge, which results in an electro-osmotic flow
near its surface that scales quadratically with the applied field magnitude. While
this so-called induced-charge electrophoresis yields no net motion in the case of
a single sphere, it can drive relative motions by symmetry breaking when several
particles are present. In addition, Maxwell stresses in the fluid also result in non-zero
dielectrophoretic forces, which also cause particle motions. The combination of these
two nonlinear electrokinetic effects, termed dipolophoresis, is analysed in detail by
using numerical simulations. An efficient simulation method based on our previous
analysis of pair interactions is presented and accounts for both far-field and near-
field electric and hydrodynamic interactions in the thin-Debye-layer limit, as well as
steric interactions using a novel contact algorithm. Simulation results in large-scale
suspensions with periodic boundary conditions are presented. While the dynamics
under dielectrophoresis alone are shown to be characterized by particle chaining
along the field direction, in agreement with previous investigations, chaining is not
found to occur under dipolophoresis, which instead causes transient particle pairings
and results in a non-uniform microstructure with large number of density fluctuations,
as we demonstrate by calculating pair distribution functions and particle occupancy
statistics. Dipolophoresis is also found to result in significant hydrodynamic dispersion
and velocity fluctuations, and the dependence of these two effects on suspension
volume fraction is investigated.
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1. Introduction
Electrokinetic flows, which result from the interaction of ionic screening clouds

and applied electric fields in viscous electrolytes, provide an efficient and low-cost
means for manipulating fluid and particles at small scales. They play a major role
in micro- and nanofluidics (Squires & Quake 2005), colloidal and interfacial science
(Russel, Saville & Schowalter 1989; Hiemenz & Rajagopalan 1997), particle and
macromolecular separations (Viovy 2000), among other fields. The classical setting
for electrokinetic flows consists of a rigid surface with a fixed charge density in
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contact with an electrolyte (or ionic solution). The surface charge repels co-ions and
attracts counter-ions in the liquid. The latter migrate and accumulate near the surface,
resulting in the formation of a diffuse charge cloud or Debye layer of characteristic
thickness λD . As an external electric field E0 is applied, an effective body force is
exerted on the ions near the surface. Next to a fixed surface (e.g. a boundary in a
microfluidic device), this body force drives an electro-osmotic flow; in the case of
a freely suspended particle in a quiescent liquid, it results in particle migration by
electrophoresis. In both cases, fluid and particle velocities are found to scale linearly
with the applied field.

In the thin-Debye-layer limit, i.e. when the Debye thickness λD is much less than
the geometric length scale of interest, these flows can be captured via an effective slip
velocity at the outer edge of the Debye layer, given by the Helmholtz–Smoluchowski
equation

us = −εζ

η
Es, (1.1)

where ε and η are the electric permittivity and dynamic viscosity of the electrolyte,
respectively, ζ is the zeta potential or potential drop across the Debye layer and is
a material property related to the surface charge, and Es is the local value of the
electric field near the surface. This slip velocity then enters the boundary condition
in the Stokes equations for the resulting fluid flow, which can be solved to determine
fluid and particle velocities. In the case of a freely suspended sphere with uniform
surface charge undergoing electrophoresis, the particle linear velocity is classically
obtained as U =(εζ/η)E0 (Smoluchowski 1903; Henry 1931).

An interesting consequence of the boundary condition (1.1), first noted by Morrison
(1970), is that the flow generated by the slip velocity around a particle with uniform
zeta potential is a potential flow, i.e. the fluid velocity is everywhere proportional
to the local electric field. An interesting consequence of this observation is that the
electrophoretic velocity of a particle does not depend on its shape (i.e. non-spherical
particles migrate at the same velocity as spherical particles), and electrophoresis does
not cause particles to rotate (Morrison 1970). The flow also remains irrotational
when several particles with identical zeta potentials are present, and a consequence
of this observation is that hydrodynamic interactions do not occur in suspensions
undergoing linear electrophoresis: all the particles migrate at the same velocity as if
they were isolated, irrespective of their separation and orientation in the electric field
(Reed & Morrison 1975; Anderson 1985; Chen & Keh 1988; Patankar 2009), at least
as long as the particles are suspended in an unbounded domain (Acrivos, Jeffrey &
Saville 1990). As a result, relative motions do not occur. Therefore, particles cannot
be separated by size, and hydrodynamic dispersion is negligible.

The assumptions for these results to hold, namely thin Debye layers, weak applied
fields, zero polarizability and surface conduction, however, are quite stringent and
are hardly all satisfied in most experiments. When some of them are relaxed,
nonlinear effects may arise and cause relative motions. The study of induced-charge
electrokinetic flows, which arise when particles (or surfaces) are polarizable and
can acquire an additional induced charge when placed in an external field (e.g.
Bazant & Squires 2004, 2010; Squires & Bazant 2004; Squires 2009), has been of
recent interest. This induced charge generally results in the formation of a non-
uniform zeta potential distribution, which, in turn, drives an induced-charge electro-
osmotic flow near the surface. Because the surface charge itself (and corresponding
induced zeta potential) is driven by the electric field, this induced-charge flow is
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easily seen to scale quadratically with the applied field. In the case of suspended
particles in an electrolyte, this phenomenon, first analysed in the Soviet and post-
Soviet colloidal literature (e.g. Simonov & Dukhin 1973; Gamayunov, Murtsovkin &
Dukhin 1986; Murtsovkin 1996), was recently termed induced-charge electrophoresis
(ICEP) by Squires & Bazant (2004). For a single ideally polarizable spherical particle,
the ICEP flow can be determined exactly, and is found not to result in particle
motion. Symmetry breaking is required for motion to occur (Squires & Bazant 2006):
non-spherical particles rotate under ICEP (Yariv 2005; Saintillan, Darve & Shaqfeh
2006a; Rose et al. 2007; Yossifon, Frankel & Miloh 2007), and particle translation
can also arise as a result of lack of fore–aft symmetry (Squires & Bazant 2006), as
well as interactions with boundaries (Zhao & Bau 2007; Abu Hamed & Yariv 2009;
Yariv 2009) or with neighbouring particles (Dukhin 1986; Dukhin & Murtsovkin
1986; Gamayunov et al. 1986; Saintillan et al. 2006a; Saintillan 2008; Rose et al.
2009).

Because of the quadratic dependence of these induced-charge flows with the applied
field, a self-consistent calculation of the resulting particle motions also requires
accounting for the Maxwell stress tensor in the fluid

Σm = ε
(
EE − 1

2
E2I

)
, (1.2)

the magnitude of which is of order O(εE2
0) as for the hydrodynamic stresses generated

by ICEP. These stresses account for dielectrophoretic (DEP) forces and torques on
the particles, which can also cause particle motion (Pohl 1978; Jones 1995; Wang,
Wang & Gascoyne 1997). While the DEP force on an isolated sphere in a uniform
electric field is zero, non-zero forces again occur when symmetries are broken, for
instance when several particles are present in a suspension (Saintillan 2008). When
DEP occurs alone (i.e. when ICEP is negligible, for instance, with non-polarizable
particles), its effect in particle suspensions is to cause aggregation, typically in the
form of chains aligned with the field direction (e.g. Füredi & Valentine 1962; Jones
1995). The combined effect of ICEP and DEP, a phenomenon sometimes referred to
as dipolophoresis (DIP) (Shilov & Simonova 1981), however, is more subtle.

While the effects of DIP have been well characterized for a single isolated particle
in an arbitrary external field (e.g. Simonova, Shilov & Shramko 2001; Miloh 2008a, b,
2009), the case of interacting particles has received less attention. Interactions between
spherical particles under ICEP alone were first analysed by Dukhin and co-workers,
who derived an asymptotic expression for the relative velocity of a pair of widely
separated ideally polarizable spheres (Dukhin 1986; Dukhin & Murtsovkin 1986;
Gamayunov et al. 1986). They found that ICEP results in particle attraction in the
field direction, and repulsion in the transverse direction; their result, however, was
not valid in the near field and did not include contributions from DEP. The effects of
near-field interactions and of DEP were more recently considered by Saintillan (2008),
who used the more accurate method of twin multipole expansions and boundary-
integral calculations to determine the relative motion of two identical spheres at
arbitrary separation distances. This study confirmed the dynamics predicted by
Dukhin and co-workers, suggesting that DIP should result in transient particle
pairings in large suspensions.

The dynamics in large-scale particle suspensions undergoing ICEP or DIP have
received little attention until now. The case of suspensions of Brownian and non-
Brownian rod-like particles was recently considered in a series of computational
studies (Saintillan et al. 2006a; Saintillan, Shaqfeh & Darve 2006b; Hoffman &
Shaqfeh 2009). These studies neglected dielectrophoresis and only included ICEP,
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on the basis that DEP interactions are weaker for high-aspect-ratio particles.
They confirmed the occurrence of frequent particle pairings as predicted from
pair interaction models, resulting in non-uniform pair distribution functions and
in hydrodynamic particle diffusion at long time even in non-colloidal suspensions.
These findings were also confirmed in experiments by Rose et al. (2009), with good
agreement with the numerical simulations.

In this paper, we use numerical simulations to investigate the dynamics in large-scale
suspensions of ideally polarizable (e.g. conducting) spheres under dipolophoresis. A
simulation method is developed in § 2 based on the analysis of pair interactions
of Saintillan (2008), and includes both ICEP and DEP far-field and near-field
interactions, as well as steric interactions (excluded volume). These interactions are
calculated efficiently by using the smooth particle mesh Ewald (SPME) algorithm
of Saintillan, Darve & Shaqfeh (2005), allowing the simulation of suspensions of
many particles. Simulation results are reported in § 3, where the pairing dynamics,
suspension microstructure, hydrodynamic diffusion and velocity fluctuations are all
analysed in detail for a variety of volume fractions ranging from dilute to semidilute
(φ ∼ 0.1–15 %). We conclude in § 4.

2. Theory and simulation method
2.1. Governing equations

We consider a collection of N neutrally buoyant spheres of radius a, freely suspended
in a viscous electrolyte with viscosity η and electric permittivity ε. The spheres are
assumed to be identical, ideally polarizable (as would be the case for metallic or
conducting particles), and to carry no net charge. As a result, linear electrophoresis
will not occur in an electric field, allowing us to isolate the effect of dipolophoresis.
We denote by xα the position of the centre of sphere α = 1, . . . , N with respect to a
fixed origin, and by Sα the surface of sphere α defined by |x − xα| = a. As an external
uniform electric field E0 is applied, interactions between the spheres will arise as a
result of both DEP and ICEP and may lead to relative motions. Next, we summarize
the governing equations for both effects.

Under the action of the external field, each sphere polarizes, resulting in the
formation of a non-uniform surface charge distribution. This charge distribution
then attracts counter-ions in the electrolyte, which migrate and accumulate near
the polarized surface, resulting in the formation of a non-uniform Debye layer.
This charging of the Debye layer occurs on a very fast time scale, of the order
of τc = λDa/D, where λD is the Debye screening length and D is the characteristic
diffusivity of the ions in solution (Squires & Bazant 2004). In a typical experiment
(λD ∼ 10 nm, a ∼ 1 µm, D ∼ 10−5 cm2 s−1), the charging time τc is of the order of 10−5 s.
On time scales much larger than τc, the ionic cloud, therefore, effectively screens the
induced non-uniform surface charge, in such a way that the particle and its charge
cloud behave like an insulator. In the thin-Debye-layer limit of interest here (λD � a),
the electric potential in the electroneutral bulk domain exterior to the charge clouds
surrounding all the particles is, therefore, governed by Laplace’s equation,

∇2φ = 0, (2.1)

subject to an effective no-flux boundary condition on the surface of the particles,

n̂α · ∇φ = 0 as x ∈ Sα, (2.2)
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where n̂α is the outward unit normal on the surface of sphere α. Rigorously, (2.2)
applies at the outer edge of the charge clouds, which effectively coincides with the
particle surfaces in the thin-Debye-layer limit. Finally, the electric potential is driven
by the far-field condition

∇φ → −E0 as |x| → ∞. (2.3)

The solution of (2.1)–(2.3) can generally be obtained using boundary-integral methods
(Zinchenko 1994) or asymptotic methods (Jeffrey 1973).

Having determined the electric potential φ in the electrolyte, the electric field is
easily obtained as E = −∇φ. Because of the presence of the particles, this field is
non-uniform and will yield a non-zero Maxwell stress tensor Σm, as defined in (1.2).
This electrostatic stress tensor is responsible for the DEP forces and torques on the
particles (Wang et al. 1997), which are obtained for particle α as

Fα =

∫
Sα

(Σm · n̂α) dSα, (2.4)

Tα =

∫
Sα

(x − xα) × (Σm · n̂α) dSα. (2.5)

For a spherical particle subject to the boundary condition of (2.2), the dielectrophoretic
torque Tα is easily seen to be zero (Saintillan 2008). However, non-zero
dielectrophoretic forces can be expected to arise by symmetry breaking even in a
uniform external electric field as soon as several particles are present.

In addition to yielding DEP forces, the electric field also causes the motion of the
counter-ions inside the double layers, driving a steady fluid flow near the particle
surfaces. In the thin-Debye-layer limit, this induced-charge electro-osmotic flow can
be captured by an effective slip velocity us on the surface of the spheres, which is
modelled using the standard Helmholtz–Smoluchowski equation

uα
s (x) = −εζα(x)

η
E(x) as x ∈ Sα, (2.6)

where ζα(x) now denotes the induced zeta potential corresponding to the induced
surface charge resulting from polarization, and is obtained in terms of the electric
potential drop across the charge cloud surrounding the particle of interest:

ζα(x) = φα
0 − φ(x) as x ∈ Sα. (2.7)

For small zeta potentials (ζα � kT /e where kT is the thermal energy and e is the ionic
charge), φα

0 is determined to enforce the neutrality condition on sphere α:∫
Sα

ζα(x) dSα = 0. (2.8)

To determine the fluid velocity u, particle translational velocities Uα and angular
velocities Ωα resulting from both DEP and ICEP, the steady Stokes equations must
be solved:

η∇2u = ∇p, ∇ · u = 0, (2.9)

subject to a slip boundary condition on the particle surfaces,

u(x) = uα
s (x) + Uα + Ωα × (x − xα) as x ∈ Sα, (2.10)

and to a homogeneous boundary condition far away from the particles,
u(x) → 0 as |x| → ∞. In (2.10), the slip velocity uα

s (x) is obtained from the
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Helmholtz–Smoluchowski equation (2.6). In addition, we impose a force and torque
balance on each particle to close the system of equations,∫

Sα

(Σh · n̂α) dSα + Fα = 0, (2.11)∫
Sα

(x − xα) × (Σh · n̂α) dSα = 0, (2.12)

where Σh = −pI+η(∇u + ∇uT ) is the hydrodynamic stress tensor in the fluid, and Fα

is the dielectrophoretic force on particle α given by (2.4). Note that particle and fluid
motions arise from two different forcing terms: the slip velocity uα

s on the particle
surfaces, corresponding to ICEP; and the force Fα on the particles, corresponding
to DEP. Owing to the linearity of the Stokes equations, both types of motions
can be solved for separately and superimposed. Solutions of (2.9)–(2.12) can again
be obtained using boundary-integral methods (Pozrikidis 1992; Saintillan 2008) or
asymptotic methods (Jeffrey & Onishi 1984; Kim & Karrila 1991; Saintillan 2008).

2.2. Pair interactions

The case of two identical spheres in an unbounded domain was analysed in detail in a
previous paper (Saintillan 2008), and is briefly summarized here. Based on symmetries,
it is easily shown that the total force on and translational velocity of the particle pair
is zero, and that both spheres rotate at the same angular velocity:

F1 = −F2, U1 = −U2, Ω1 = Ω2. (2.13)

Furthermore, F1, U1 and Ω1 can be expressed in tensorial form as

F1 = 4πεa2 F : E0 E0, (2.14)

U1 = (εa/η) M : E0 E0, (2.15)

Ω1 = (ε/η) W : E0 E0. (2.16)

In (2.14)–(2.16), F and M are two third-order tensors and W is a third-order pseudo-
tensor; all three are dimensionless and depend only on the geometric configuration
of the two spheres. Note that F arises as a result of DEP only, whereas M and W
have contributions from both DEP and ICEP: M =Mdep + Micep , W =Wdep + Wicep .
Defining R = x2 − x1 as the separation vector between the two spheres pointing from
sphere 1 to sphere 2, their most general form, based on symmetry considerations, can
be written in indicial notation as

Fijk = f (λ)(δij R̂k + δikR̂j ) + g(λ)R̂iδjk + h(λ)R̂iR̂j R̂k, (2.17)

Mijk = l(λ)(δij R̂k + δikR̂j ) + m(λ)R̂iδjk + n(λ)R̂iR̂j R̂k, (2.18)

Wijk = w(λ)εijl R̂lR̂k, (2.19)

where λ= 2a/R ∈ [0, 1] and R̂ = R/R. In (2.17)–(2.19), εijl is the Levi–Civita
alternating tensor, and f , g, h, l, m, n and w are seven dimensionless scalar functions
of λ. These functions were previously calculated by Saintillan (2008) using the method
of reflections, which is valid for large separation distances (typically λ � 0.6), as well
as with the more accurate method of twin multipole expansions and boundary-integral
method. Here, we report only asymptotic results for the translational velocity valid
to O(λ4), which will be the basis for modelling far-field interactions in multiparticle
systems in § 2.3. In particular, the functions l, m and n corresponding to DEP- and
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ICEP-induced motions were obtained as

ldep(λ) = − 1

32
λ4 + O(λ5), (2.20)

mdep(λ) = − 1

32
λ4 + O(λ5), (2.21)

ndep(λ) =
5

32
λ4 + O(λ5) (2.22)

and

licep(λ) =
11

64
λ4 + O(λ5), (2.23)

micep(λ) = − 9

32
λ2 +

11

64
λ4 + O(λ5), (2.24)

nicep(λ) =
27

32
λ2 − 55

64
λ4 + O(λ5). (2.25)

From the method of reflections (Saintillan 2008), it can be shown that multiple
reflections modify only these tensors to order O(λ5) and higher, so that (2.20)–(2.25)
correctly describe the leading-order DEP and ICEP interactions between the two
widely separated particles even when other particles are present. The corresponding
far-field tensors Mdep

FF , and Micep
FF can also be expressed in a more compact form in

terms of fundamental solutions of the Stokes equations,

Mdep
FF =

1

12
T(R/a) + O(λ5), (2.26)

Micep
FF = −9

8
S(R/a) − 11

24
T(R/a) + O(λ5), (2.27)

where the two third-order tensors S and T= ∇2S are the Green’s functions for a Stokes
dipole and for a potential quadrupole, respectively (Happel & Brenner 1965; Kim &
Karrila 1991). In an unbounded domain, these are expressed in indicial notation as

Sijk (R) = −δijRk

R3
+

δikRj

R3
+

δjkRi

R3
− 3

RiRjRk

R5
, (2.28)

Tijk (R) = − 6

R5
(δijRk + δikRj + δjkRi) + 30

RiRjRk

R7
. (2.29)

The pair dynamics resulting from these interactions were analysed by Saintillan
(2008) and are summarized in figure 1, showing the radial and tangential components
of the relative velocity U = U2 − U1 = −2U1 between the two spheres as functions of
the angle Θ between the axis of the two spheres and the direction of the external field
(E0 · R̂ = E0 cos Θ). Specifically, both DEP and ICEP are attractive when the two
particles are nearly aligned with the direction of the electric field, and repulsive when
they are aligned in the transverse direction, as demonstrated by the sign of the radial
relative velocity Ur = U · R̂ in figure 1(a). This transition from attraction to repulsion
is illustrated more clearly in figure 2, where the critical angle Θc, at which the radial
velocity changes sign, is plotted as a function of the separation distance between the
two spheres. Both DEP and ICEP can, therefore, be expected to result in particle
pairing in the field direction, and in particle separation in the transverse direction.
The two types of motion are, however, significantly different, as demonstrated by
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Figure 1. (a) Radial and (b) tangential components of the DEP, ICEP and total relative
velocities between two spheres as functions of the angle Θ between the direction of the electric
field E0 and the separation vector R. Velocities have been scaled by U0 = (εa/η)E2

0 and are
evaluated at R/a = 2.5 (or λ= 0.8) based on the far-field expressions of (2.26)–(2.27).
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Figure 2. Critical value of the angle Θ for which the total radial velocity between two spheres
is zero: Ur = U · R̂ = 0, plotted as a function of the separation distance between the spheres.
This critical angle separates configurations for which particle attraction (Ur < 0) and repulsion
(Ur > 0) occur.

the tangential component of the relative velocity shown in figure 1(b): in the case
of DEP, the aligned configuration (corresponding to Θ = 0) is a stable equilibrium,
whereas it is unstable for ICEP. In dipolophoresis, where both DEP and ICEP occur
concurrently, ICEP is observed to dominate as a result of the slower O(λ2) decay
of interactions, so that paired configurations are unstable. These observations will
all be confirmed in simulations in § 3, where it is found that DEP alone causes
particle chaining in the field direction, whereas DEP and ICEP together only result in
transient particle pairings, by which two particles are attracted in the field direction,
briefly pair up and separate in the transverse direction.
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2.3. Simulation method

As described next, the analysis of pair interactions of § 2.2 can be used as the starting
point for the simulation of large-scale suspensions of many interacting particles.
Specifically, far-field interactions can be modelled using periodic analogues of (2.26)–
(2.27), which are corrected in the near-field based on twin multipole expansions, as
explained below. These interactions are also corrected for excluded volume as detailed
in § 2.3.3.

2.3.1. Electric and hydrodynamic interactions

We consider a collection of N spherical particles in a periodic domain of linear
dimensions Lx × Ly × Lz, and assume that the external electric field points in the
z direction: E0 = E0 ẑ. The motion of each particle results from DEP and ICEP
interactions with the other N − 1 particles in the domain, as well as with the periodic
images of all N particles. Based on the analysis of § 2.2, the translational velocity ẋα

of a given particle α may be expressed as

ẋα =
εaE2

0

η

N∑
β=1

[
M̃dep(Rαβ/a) + M̃icep(Rαβ/a)

]
: ẑ ẑ, α = 1, . . . , N, (2.30)

where Rαβ = xβ − xα is the separation vector between particles α and β pointing from
particle α to particle β , and where the two tensors M̃ account for DEP and ICEP
interactions, respectively. Specifically, for both DEP and ICEP, M̃ is calculated as
follows:

M̃(Rαβ/a) =

{
MP (Rαβ/a) if Rαβ � 4a,

MP (Rαβ/a) − MFF (Rαβ/a) + MTM (Rαβ/a) if Rαβ < 4a.
(2.31)

In (2.31), MP denotes the periodic version of the far-field tensors Mdep
FF and Micep

FF given
in (2.26)–(2.27), which accounts for far-field interactions of particle α with particle β

and all its periodic images; the method for calculating MP is detailed in § 2.3.2. As
discussed in § 2.2, these far-field tensors are asymptotically valid to order O(R−4

αβ ) for
any pair of two particles α and β , and their use is, therefore, justified when particles
are sufficiently far apart from each other, in this case when their separation distance
is greater than 4a. This ensures good accuracy, as demonstrated by Saintillan (2008).
When particles come closer together (Rαβ < 4a), for instance during pairing events,
the interaction tensors need to be corrected for the near-field interactions. This is
achieved in (2.31) by replacing the far-field tensor MFF for the direct interaction
between particles α and β by a more accurate version MTM calculated by Saintillan
(2008) using the method of twin multipole expansions. This tensor is expressed in
the form of (2.18), where the functions l, m and n are obtained by using cubic-spline
interpolation from previously tabulated values (Saintillan 2008). While the twin-
multipole expansion method cannot capture interactions when particles are almost
touching, it still provides very accurate expressions down to separation distances of
the order of Rαβ ≈ 2.05a. At shorter separations, more accurate expressions could
be obtained using lubrication theory. However, lubrication interactions between two
spheres in DEP or ICEP have yet to be calculated (note that the lubrication theory
for one sphere and a planar insulating wall under ICEP was recently worked out by
Abu Hamed & Yariv 2009).
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2.3.2. The smooth particle mesh Ewald algorithm

The calculation of the sums in (2.30) is a computationally expensive step with
O(N2) operations if performed directly, and can become prohibitive for large values
of N . To accelerate the calculation of these sums, we make use of an SPME algorithm,
which is based on the Ewald summation formula of Hasimoto (1959) and on fast
Fourier transforms, and reduces the cost of evaluating interactions to O(N log N).
The SPME algorithm was previously developed by Saintillan et al. (2005) for point-
force interactions in Stokes flow (Stokeslet interactions), and shares similarities with
the accelerated Stokesian dynamics method of Sierou & Brady (2001). Here, the
method of Saintillan et al. (2005) is used and adapted to model Stokes dipole and
potential quadrupole interactions with periodic boundary conditions, as required by
(2.26)–(2.27).

Specifically, we wish to evaluate sums of the form

us(xα) =

N∑
β=1

SP (xβ − xα) : ẑ ẑ, (2.32)

ut (xα) =

N∑
β=1

TP (xβ − xα) : ẑ ẑ, (2.33)

for α = 1, . . . , N , where SP and TP denote the periodic versions of the Green’s
functions for a Stokes dipole and a potential quadrupole, respectively. Recalling that
SP = ∇KP and TP = ∇2SP , where KP is the periodic Oseen–Burgers tensor (or Green’s
function for a periodic array of point forces in Stokes flow), and making use of the
known Ewald summation formula for KP (Hasimoto 1959; Saintillan et al. 2005),
(2.32)–(2.33) can be recast into the following Ewald summations:

us(xα) =
∑

p

N∑
β=1

As(ξ, xβ − xα + p) : ẑ ẑ +
∑
k 	=0

e−2πik·xαS(k)Bs(ξ, k) : ẑ ẑ, (2.34)

ut (xα) =
∑

p

N∑
β=1

At (ξ, xβ − xα + p) : ẑ ẑ +
∑
k 	=0

e−2πik·xαS(k)Bt (ξ, k) : ẑ ẑ. (2.35)

In (2.34)–(2.35), the first sums, or real sums, are over all the particle positions xβ

and their periodic images (as denoted by the lattice vectors p). The second sums, or
Fourier sums, are over wavevectors k and involve the structure factor S(k) of the
suspension (Essmann et al. 1995):

S(k) =

N∑
β=1

exp(2πik · xβ). (2.36)

The parameter ξ in (2.34)–(2.35), called the Ewald coefficient, determines the relative
importance of the real and Fourier sums; it is user-defined and is chosen to minimize
the overall cost of the algorithm. The convolution kernels As , At , Bs and Bt are
third-order tensors and can be obtained analytically in indicial notation as

As
ijk (ξ, x) = −πξ−3/2ψ1/2(πx2/ξ )(4δijxk − δikxj − δjkxi)

+ 2π2ξ−5/2ψ3/2(πx2/ξ )(x2δijxk − xixjxk), (2.37)
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At
ijk (ξ, x) = 2π2ξ−5/2ψ3/2(πx2/ξ )(28δijxk − 7δikxj − 7δjkxi)

− 4π3ξ−7/2ψ5/2(πx2/ξ )(13x2δijxk − x2δikxj − x2δjkxi − 9xixjxk)

+ 8π4ξ−9/2ψ7/2(πx2/ξ )(x4δijxk − x2xixjxk) (2.38)

and

Bs
ijk (ξ, k) = −2π2i ξ 2τ−1ψ1(πξk2)(k2δijkk − kikj kk), (2.39)

Bt
ijk (ξ, k) = 8π2i ξ 2τ−1ψ1(πξk2)k2(k2δijkk − kikj kk). (2.40)

In (2.37)–(2.40), x2 and k2 stand for |x|2 and |k|2, respectively, τ = Lx × Ly × Lz is
the volume of the periodic cell and ψν denotes the incomplete Γ -function of order ν

(Abramowitz & Stegun 1965). In particular,

ψ1(x) =
exp(−x)

x2
(1 + x), ψ1/2(x) =

exp(−x)

x
+

√
π

2x3/2
erfc(

√
x), (2.41)

and the other functions are obtained using the recursion formula: xψν = exp(−x) +
νψν−1.

Note that all tensors As , At , Bs and Bt decay exponentially, so that the sums in
(2.34)–(2.35) converge exponentially. In SPME, these are evaluated as follows (see
Saintillan et al. 2005 for more details). The Ewald coefficient ξ is chosen so as to
make all the terms in the real sums negligible beyond a fixed cutoff distance rc:
this allows truncation of these sums after a finite number of terms independent of
the system size, resulting in an O(N) cost for the evaluation of the real sums at all
particle positions. For the second sums, or Fourier sums, the particle distribution
is assigned to a Cartesian grid by B-spline interpolation (Essmann et al. 1995;
Deserno & Holm 1997), and then transformed to Fourier space using the fast Fourier
transform algorithm, yielding the structure factor S(k). The structure factor is then
multiplied by the convolution kernels Bs and Bt . The inverse Fourier transform is
applied, and interpolation is used to determine the values of the Fourier sums at the
particle locations. The cost of the evaluation of the Fourier sums is limited by the
fast Fourier transform algorithm, which scales as O(K log K) with the number K of
grid points (or Fourier modes). This number is typically chosen to be proportional to
the number of particles N , resulting in an O(N log N) overall cost for the evaluation
of the velocities in (2.32)–(2.33), or equivalently for the evaluation of (2.30).

2.3.3. Time marching and contact algorithm

Having determined all the particle velocities ẋα (α = 1, . . . , N) using (2.30) and
the SPME algorithm, particle positions are advanced in time using a second-order
Adams–Bashforth time-marching scheme, with an explicit Euler scheme for the first
time step. A fixed time step �t is used, and is chosen so as to ensure that particles
only travel a fraction of the mean inter-particle distance during one integration
step.

Because lubrication interactions are not included, and because of the use of finite
time steps, hydrodynamic interactions are not sufficient to prevent particle overlap. In
many simulation methods for particle dynamics at low Reynolds number, including
Stokesian dynamics and its variants, particle overlap is avoided by introducing
short-range repulsive forces which act when particles are close to contact (e.g. Nott &
Brady 1994; Butler & Shaqfeh 2002). These short-range forces, while efficiently
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preventing overlaps, are only an approximation to the actual hard-sphere potential
between two solid particles, and may introduce spurious dynamics in the near-contact
particle motions.

Here, we develop a contact algorithm, which also efficiently prevents overlaps
without introducing any additional long-distance interactions. At each discrete time
tn, we denote �xn

α = xn+1
α − xn

α as the displacement of particle α during the next time
step if particle overlapping is ignored (i.e. if particle positions are simply advanced
according to the velocities calculated in § 2.3.1). For each particle α, the set of particles
β (β =1, . . . , M) that will overlap with α after performing this step can be determined,
by checking whether |xn+1

β − xn+1
α | < 2a. In most situations, M = 1 corresponding to

a pair of overlapping particles, but in some cases M can be as large as 2 or 3,
corresponding to a small cluster of overlapping particles. For each particle β with
which overlap will occur, the fraction of �t after which surface contact actually
occurs, assuming that the particles move at a constant velocity during the time step, is
calculated: this collision time, denoted by �tαβ

c , is obtained by solving the quadratic
equation ∣∣xn

α − xn
β +

(
�xn

α − �xn
β

)
�tαβ

c /�t
∣∣2 = (2a)2. (2.42)

Equation (2.42) has two solutions for �tαβ
c , but only one in the interval [0, �t]: this

solution is the relevant root and is chosen for �tαβ
c . Next, the particles β = 1, . . . , M

are sorted by increasing values of �tαβ
c , i.e. such that �tα1

c � · · · � �tαβ
c � · · · � �tαM

c .
Finally, particle α is moved back to its original position xn

α and advanced according
to the following expression:

xn+1
α = xn

α +

M∑
β=1

R̂n
αβ R̂n

αβ ·
[

β−1∏
γ=1

(I − R̂αγ R̂αγ )

]
· �xn

α × �tαβ
c

�t
+

[
M∏

β=1

(I − R̂αβ R̂αβ)

]
· �xn

α,

(2.43)

where R̂αβ is the unit vector pointing from sphere α to sphere β . In the summation term
corresponding to β = 1, the product over γ is simply replaced with the identity tensor.
Equation (2.43) simply states that particle α is moved only a fraction �tαβ

c /�t of the
full time step in the direction in which overlap would otherwise occur with particle
β; the particle position, however, is still advanced a full step in the normal directions.
This algorithm can be verified to prevent all overlaps (within roundoff errors) and to
effectively model a hard-sphere potential without introducing unphysical long-distance
interactions, as would be the case with a soft potential.

In the following discussion, governing equations and physical quantities are made
dimensionless using the particle radius a as a characteristic length scale and the
nonlinear velocity scale εaE2

0/η with which both DEP and ICEP motions scale, as
can be seen from (2.30).

3. Results and discussion
We now present results from large-scale simulations performed with the algorithm

described above. Most of the data shown here were obtained in large-scale suspensions
of 1000 to 3000 spheres, with the exception of figures 3–5, where only 100
particles were simulated for ease of visualization. We first describe results on the
suspension microstructure under DEP alone and under DIP in § 3.1, and then analyse
hydrodynamic diffusion and particle velocity statistics in §§ 3.2 and 3.3, respectively.
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(a) (b)

E0 E0

Figure 3. Particle distributions in a suspension of 100 spheres undergoing DEP alone in
a periodic box of dimensions Lx × Ly × Lz = 203 (volume fraction φ = 5.24 %) at times
(a) t = 0 (random initial distribution), and (b) t = 520. As expected, DEP forces give rise to the
formation of particle chains in the direction of the electric field. Also see the accompanying
online movie available at journals.cambridge.org/flm.

3.1. Particle dynamics and microstructure

3.1.1. Dynamics under dielectrophoresis

Prior to presenting simulation results for particle dynamics under both DEP and
ICEP in § 3.1.2, we first describe simulations obtained with dielectrophoresis alone
(in the absence of induced-charge electrophoresis). This situation would be relevant
to the case of non-polarizable particles, and may also qualitatively describe the
case of dielectric particles for which ICEP is typically much weaker if not negligible
(Squires & Bazant 2004). The anticipated effect in this case is the formation of particle
chains as a consequence of the electric interactions between the induced dipoles on
the particles: this particle chaining has been known for a long time and was previously
characterized in both experimental and theoretical studies (e.g. Füredi & Valentine
1962; Pohl 1978; Jones 1995). This chaining is also clearly expected from the analysis
of § 2.2 and based on figure 1, where we found that DEP interactions are attractive
in the direction of the electric field, and that the aligned (‘chained’) configuration is
a stable equilibrium in the case of two particles, unlike under ICEP interactions for
which it is unstable. Figure 3 and the accompanying online movie show typical particle
dynamics observed under DEP only. Starting from a random initial distribution
(figure 3a), dielectrophoretic interactions cause particle configurations to rearrange,
leading to the formation of long chains in the direction of the electric field (figure 3b).
Eventually, chain growth becomes limited by the height of the simulation box and
saturates. Also note that the motions resulting in this chain formation are quite slow
(compared for instance to ICEP-induced motions, see § 3.1.2), and do not result in
random particle motions or hydrodynamic diffusion: once the chains are formed
the particles enter a frozen state where little to no motion occurs. Because particle
chaining under DEP is a well-known phenomenon that has been characterized in
the past, we now turn our focus more specifically on dipolophoresis, in which case
the combined effects of DEP and ICEP are found to result in qualitatively different
dynamics.
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(a) (b)

E0 E0

Figure 4. Particle distributions in a suspension of 100 spheres undergoing DIP (both DEP
and ICEP) in a periodic box of dimensions Lx × Ly × Lz = 203 (volume fraction φ = 5.24 %)
at times (a) t = 0 (random initial distribution) and (b) t = 400. DIP is found to result in the
formation of transient particle clusters, as seen in (b). Also see the accompanying online movie.

(a) (b)

Figure 5. Two-dimensional particle distributions in a monolayer of 100 spheres undergoing
DIP (both DEP and ICEP) in a periodic box of dimensions Lx ×Ly ×Lz = 50×3×50 (volume
fraction φ = 5.59 %) at times (a) t = 0 (random initial distribution) and (b) t = 280. The electric
field points in the vertical direction. At t =280, a non-uniform particle distribution is observed
as a result of DIP interactions, with small clusters surrounded by clarified regions. Also see
the accompanying online movie.

3.1.2. Dynamics under dipolophoresis

The dynamics in a suspension undergoing both DEP and ICEP are illustrated
in figure 4 and the accompanying online movie. Starting from an initial random
distribution, particles are found to undergo random chaotic motions as a result of
DIP interactions: these motions constantly cause particle configurations to rearrange,
but do not lead to the formation of chains as in the case of DEP interactions only
(figure 3). Figure 4(b) also suggests that these particle configurations are not entirely
random but exhibit clusters and depleted regions, which are transient and constantly
break up and reform with time. These effects are more easily seen in figure 5 and the
accompanying online movie, which show the dynamics in a two-dimensional particle
monolayer. In this geometry, particle motions are seen to be characterized by frequent
particle pairings, by which two particles are attracted in the direction of the electric
field, pair up, and separate in the perpendicular direction. These frequent pairings
in turn result in the formation of transient clusters as mentioned previously, and of
clarified regions (figure 5b).
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Figure 6. Separation distance from a test sphere to its nearest neighbour as a function of
time in suspensions undergoing DIP, at volume fractions (a) φ = 0.98 %, (b) φ = 3.02 % and
(c) φ = 7.85 %. In each case, the dotted line shows the mean inter-particle distance aφ−1/3. As
volume fraction increases, fluctuations become more rapid indicating more frequent particle
pairings.

The observed transient pairings are a direct consequence of the pair dynamics
previously described by Saintillan (2008) and in § 2.2. DIP interactions indeed result
in attraction in the direction of the electric field; the aligned configuration, however,
is an unstable equilibrium when both DEP and ICEP occur, causing the particle
pair to rotate and reorient in a direction perpendicular to the electric field. In this
configuration, interactions become repulsive and cause the particles to separate. These
pairing events are qualitatively similar to those previously predicted by Saintillan et al.
(2006a) in suspensions of rod-like particles, which were also observed experimentally
by Rose et al. (2009). Note, however, that in the case of high-aspect-ratio rod-like
particles, DEP interactions can be neglected with respect to ICEP, owing to their
scaling with the square of the inverse aspect ratio (Saintillan et al. 2006a).

These pairing events are further illustrated in figure 6, showing the time evolution
of the distance from a test particle to its nearest neighbour over the course of
three simulations at three distinct volume fractions φ. In each case, the minimum
distance constantly fluctuates between a value of approximately two particle radii,
corresponding to near contact, i.e. pairing, and a larger value of the order of
the mean inter-particle distance aφ−1/3 for each given volume fraction. As volume
fraction increases, the characteristic pairing frequency, or dominant frequency of
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Figure 7. Pair distribution functions in suspensions of 1200 spheres undergoing DIP at
volume fractions (a) φ = 1.5 % and (b) φ = 11.7 %. The black region inside the white quarter
circle corresponds to the region of excluded volume. Bright regions result from particle pairings
in the direction of the electric field, while the depletion region along the horizontal axis is a
consequence of the strong particle repulsion that occurs when two spheres are side by side.

the fluctuations in figure 6, is found to increase significantly, an effect that can be
attributed to the lower mean separation distance which facilitates pairings, and to the
stronger magnitude of DIP interactions in more concentrated suspensions.

The effects of pairings on the local microstructure of the suspensions may be
investigated more quantitatively by calculating pair distribution functions p(r, z) in
cylindrical coordinates (with r2 = x2+y2), giving the probability of finding a particle at
position (r, z), if a particle is located at the origin. Note that p(r, z) is axisymmetrical
and symmetrical with respect to the horizontal xy plane. Figure 7 shows two pair
distribution functions at two different volume fractions, obtained from simulations.
The black region inside the circle of radius 2a corresponds to excluded volume. The
pair distributions are characterized by sharp peaks near the z-axis (pole of the
particles), corresponding to a high probability of finding two particles aligned or
nearly aligned in the direction of the electric field: these peaks are a direct consequence
of the particle pairings described above. Conversely, the pair distributions also exhibit
depletion regions near the equator, as demonstrated by the dark regions that extend
radially about z = 0: these depletions are due to the repulsion that occurs when two
particles are side by side. The two distributions at two different volume fractions are
qualitatively very similar. Yet, it is found that the pairing region becomes less sharp as
concentration increases; this is the likely consequence of the stronger hydrodynamic
fluctuations occurring in concentrated suspensions, which result in stronger particle
diffusion as discussed in § 3.2 and, therefore, somewhat hinder clear pairings. Note
that the results of figure 7 are also consistent with previous theoretical, computational
and experimental findings made on suspensions of rod-like particles (Saintillan et al.
2006a; Rose et al. 2009).

While the pair distribution functions of figure 7 characterize the effect of particle
pairings on pair configurations, it is obvious from the distributions of figures 4 and
5 that DIP also results in a non-uniform and non-random microstructure on larger
length scales, as demonstrated by the presence of particle clusters and clarified regions.
To further investigate this feature, we present results for particle occupancy statistics,
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Figure 8. Particle occupancy distributions for 〈N〉 = 5 in a suspension of volume fraction
(a) φ = 0.37 % and (b) φ = 2.45 % undergoing DIP. The plots show the initial and steady-state
distributions, as well as the Poisson distribution of (3.1). For both volume fractions, DIP
interactions result in a broadening of the distributions, corresponding to an increase in
number fluctuations as a result of particle clustering.

which characterize number-density fluctuations at arbitrary scales. Given a cubic
interrogation cell of a given fixed volume V , we expect the mean number of particles
inside the cell to be given by 〈N〉 =φV/Vp where φ is the volume fraction and
Vp = 4πa3/3 is the volume of one sphere. In practice, when such a cell is positioned
arbitrarily inside the simulation box, it will contain a number N of particles that
may differ from the expected value 〈N〉. The distribution P (N) of this number of
particles at a given 〈N〉 (or equivalently a given cell volume V ) characterizes number-
density fluctuations with respect to a perfectly homogeneous suspension. In a random
suspension with particle positions obeying Poisson statistics, this distribution is known
exactly and given by

P (N) =
〈N〉Ne−〈N〉

N!
. (3.1)

Figure 8 shows the distribution P (N) measured in the simulations for an interrogation
cell containing 〈N〉 = 5 particles on average. The two plots correspond to two volume
fractions φ, and show occupancy statistics at t = 0 (initial random distribution) and
at steady state under DIP; they also compare these distributions to the Poisson
distribution of (3.1). At the lower volume fraction of φ = 0.37 % (figure 8a), the
initial random distribution is well captured by a Poisson distribution as expected
since excluded volume plays a negligible role in very dilute suspensions. However, at
steady state, the distribution is found to depart from Poisson statistics: specifically
the distribution is slightly broader, corresponding to larger number fluctuations on
the scale of the interrogation box than in a random suspension, as expected from
figures 4(b) and 5(b). At the higher volume fraction of φ =2.45 % (figure 8b), similar
trends are observed. In this case, the initial distribution departs slightly from Poisson
statistics, which is a consequence of excluded volume, which prevents strong number
fluctuations; however, under dipolophoresis, the distribution is found to broaden as
well, as a result of particle clustering under DEP and ICEP interactions.

The departure from a random distribution as a result of interactions is also made
more quantitative in figure 9, showing the standard deviation σN of the distributions
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Figure 9. Standard deviation σN of the number of particles versus 〈N〉 in a suspension of
volume fraction φ = 0.37 % under DIP. The standard deviation is well captured by a power
law σN ≈ 〈N〉0.525 (solid line), which exceeds the Poisson law σN = 〈N〉1/2 (dotted line).

P (N) as a function of the expected mean 〈N〉, for a given volume fraction. The
standard deviation is found to be well captured by a power law: σN ≈ 〈N〉0.525, which
can be compared with the theoretical exponent of 1/2 for a Poisson distribution. This
confirms that interactions under DIP result in larger number fluctuations than in
random suspensions. The departures from the Poisson law, in both figures 8 and 9,
however, remain quite weak, for instance compared with other suspension flows such
as sedimentation, where strongly non-Poisson statistics have been reported in some
cases (e.g. Lei, Ackerson & Tong 2001; Bergougnoux & Guazzelli 2009).

3.2. Hydrodynamic dispersion

Because of the frequent transient particle pairings that take place under DIP, particles
in the suspension follow trajectories in space analogous to random walks. This is most
easily seen in the online movies accompanying figures 4 and 5, and is also illustrated
in figure 10, showing the trajectory of a sample particle in the two-dimensional
simulation of figure 5. The trajectory is found to be random and chaotic; it exhibits
smooth sections over which the particle meanders in space, separated by ‘kinks’ or
sharp turns, which correspond to particle pairings. Over long times, such trajectories
can be expected to result in an effective diffusive motion, the origin of which is
not thermal but is hydrodynamic in nature. Hydrodynamic diffusion is common
in suspensions of hydrodynamically interacting particles (e.g. Ham & Homsy 1988;
Drazer et al. 2002; Pine et al. 2005), and has already been reported in suspensions of
rod-like particles under ICEP (Saintillan et al. 2006a; Rose et al. 2009).

To quantify hydrodynamic diffusion under DIP, mean-square particle displacements
versus time were calculated, and typical curves are shown in figure 11. As is usual
for hydrodynamic diffusion, these curves exhibit an initial ballistic regime in which
the mean-square displacements grow quadratically with time. After a few particle–
particle interactions, particle motions start decorrelating in time, and a transition to a
diffusive regime is observed, with a linear growth of the mean-square displacements.
The transition between these two regimes is particularly clear in the log–log plot of
figure 11(b). From these curves, an effective hydrodynamic diffusion tensor D can be
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Figure 10. Typical particle trajectory in the simulation of figure 5. The particle is found to
follow a random walk in space, with a trajectory exhibiting smooth sections separated by sharp
turns corresponding to particle pairings.
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Figure 11. Mean-square displacement curves in the x and z directions as functions of time:
(a) linear plot and (b) log–log plot. The log–log plot clearly shows an initial quadratic growth
corresponding to ballistic motion, followed by a transition to a linear growth corresponding
to hydrodynamic diffusion at long time. An effective hydrodynamic diffusion tensor can be
inferred by 〈(x(t) − x0)(x(t) − x0)〉 ∼ 2Dt as t → ∞.

evaluated as

D = lim
t→∞

1

2

d

dt
〈(x(t) − x0)(x(t) − x0)〉, (3.2)

where the angle brackets denote an ensemble average over all particles and several
realizations of the same simulation. As expected from figure 11, the tensor D is
anisotropic, with stronger diffusivities arising in the electric field direction than in
the perpendicular directions: Dzz > Dxx = Dyy . The dependence of the diffusivities on
suspension volume fraction is shown in figure 12, where the diffusivities are scaled
by εa2E2

0/η. In the dilute to semidilute regime (φ � 5 %), diffusivities are observed
to grow with volume fraction, following a power law with exponent ≈0.25. Around
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Figure 12. Hydrodynamic diffusivities in the directions parallel (z direction) and
perpendicular (x direction) to the electric field as functions of volume fraction. The diffusivities
were determined using mean-square displacement curves and (3.2).

φ ≈ 5 %, the diffusivities are found to reach a maximum, followed by a significant
decrease at higher concentrations. The increase at low volume fractions is easily
explained by the increase in the magnitude of particle–particle interactions with
concentration. The subsequent decrease, however, is less easily explained, but may be
a consequence of excluded volume interactions, which become significant and may
hinder particle diffusion in concentrated suspensions. Over the entire range of volume
fractions shown in figure 12, the ratio Dzz/Dxx of the diffusivities in the field direction
and perpendicular directions is found to remain roughly constant and equal to ≈3.2.
Note that all of these results are qualitatively consistent with the previous study of
Saintillan et al. (2006a) on suspensions of rod-like particles under ICEP, where a
similar diffusivity increase had been reported at low volume fractions.

3.3. Velocity statistics

We finish by reporting results on particle velocity statistics in the simulations. While
DIP does not result in any net particle motions (in fact, the mean particle velocity
over the whole suspension is exactly zero at all times), it does result in significant
velocity fluctuations as a result of interactions. Typical velocity distributions in the z

and x directions at two different volume fractions are shown in figure 13, where they
are normalized to have an integral of 1, and are compared with Gaussian distributions
with the same variance. Consistent with our findings on the diffusivities in § 3.2, we
find that particle velocities are larger in the field direction than in the perpendicular
directions, and that their typical magnitude increases with volume fraction. While
the velocity distributions are well captured by Gaussian distributions at low-velocity
magnitudes, they also exhibit broad tails that are clearly non-Gaussian, especially in
the directions perpendicular to the electric field. This observation is not too surprising
considering the simulations are not in thermal equilibrium.

Velocity fluctuations are quantified more precisely in figure 14, showing the standard
deviation of the particle velocities in the field and perpendicular directions as functions
of volume fraction. As expected, the fluctuations are found to be larger in the direction
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Figure 13. Particle velocity distributions in the x and z directions in suspensions undergoing
DIP at a volume fraction of (a)–(b) φ = 1.5 %, and (c)–(d ) φ = 11.7 %. The distributions are
compared to Gaussian distributions with the same variance (dotted curves).
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of the electric field, and they are also found to grow with volume fraction in the dilute
and semidilute regimes, according to an approximate power law with exponent ≈0.46.
Beyond φ ≈ 7 %, they are found to saturate and eventually decay as φ increases further,
in qualitative agreement with the behaviour observed on the particle diffusivities in
figure 12.

4. Concluding remarks
We have presented a theoretical and computational study of particle motions

resulting from electric and hydrodynamic interactions under dipolophoresis (or
combination of dielectrophoresis and induced-charge electrophoresis) in suspensions
of ideally polarizable spheres in a uniform externally applied electric field. Based
on the previous study of Saintillan (2008), we first analysed pair interactions, which
are found to be attractive in the direction of the electric field, but repulsive in the
transverse direction. While DEP alone is found to result in particle chaining, with a
stable equilibrium for two particles aligned in the direction of the electric field, this
equilibrium becomes unstable when ICEP occurs as well, so that chaining should
not occur. Instead, transient particle pairings are predicted, by which two particles
are attracted in the direction of the field, pair up and separate in a perpendicular
direction.

To confirm this analysis and investigate the effects of these interactions when
many particles are present, an algorithm was developed to simulate large-scale sphere
suspensions with periodic boundary conditions. The simulation method includes
far-field and near-field DEP and ICEP interactions, steric effects via a contact
algorithm, and is accelerated using an efficient SPME algorithm (Saintillan et al. 2005).
Simulations in suspensions undergoing DEP alone (no induced-charge electrophoresis)
exhibit the formation of long particle chains in the direction of the field, the growth of
which is eventually limited by system size: this chaining is consistent with the analysis
of pair interactions, and is a well-known phenomenon that has been characterized
in the past. When ICEP occurs as well (i.e. under dipolophoresis), the chaining is
found to disappear altogether, and is replaced by transient particle pairing events, in
agreement with previous studies on rod suspensions (Saintillan et al. 2006a; Rose et al.
2009). These pairings are found to result in non-uniform pair distribution functions
with peaks near the particle poles and depletions near the equators; in addition, they
also lead to a non-uniform microstructure, with the formation of transient clusters
and clarified regions, as demonstrated by the large number fluctuations measured
in the simulations, which exceed those of a random suspension. In addition, these
motions result in significant velocity fluctuations and in hydrodynamic diffusion at
long time, both of which are found to become stronger with volume fraction in the
dilute and semidilute regimes.

The interactions in this study are likely to play a role in all applications in which
polarizable particles are placed in an external electric field, including in electrophoresis.
They have often been overlooked in the past on the basis that they scale quadratically
with the electric field strength, and therefore, should be negligible compared to
electrophoretic motions in weak fields. However, the typical magnitude of DIP-
induced motions is O(εaE2

0/η), while electrophoretic motions scale with O(εζE0/η),
where ζ is the native zeta potential of the particles: DIP should therefore become
significant when aE0/ζ ∼ O(1). In a typical microfluidic experiment for which a ∼
1–10 µm, ζ ∼ 10–100 mV, and E0 ∼ 10–100 V cm−1, we expect aE0/ζ ∼ 0.01–10, which
suggests that DIP will often play a role. In particular, the classical prediction that
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linear electrophoresis does not result in any relative motions is likely to prove wrong in
many experiments, where velocity fluctuations and hydrodynamic diffusion are likely
to arise as a result of DIP. While this study focused on ideally polarizable particles,
such as metallic colloids for instance, many microfluidic applications use dielectric
particles which are only weakly polarizable. In this case, the expected qualitative
difference will be the relative importance of DEP and ICEP: ICEP was previously
shown to become much weaker in this case (Dukhin 1986; Squires & Bazant 2004;
Yossifon et al. 2007), so that interactions overall will also be weaker, and particle
chaining may still arise as a result of DEP, depending on the type of particles used.

The authors gratefully acknowledge discussions with Dr Klint Rose, and funding
from Lawrence Livermore National Laboratory under subcontract DOE-B583843.

Supplementary movies are available at journals.cambridge.org/flm.
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