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Spontaneous directional flow of active magnetic particles
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We predict the emergence of large-scale polar order and spontaneous directional flows in a class of self-
propelled autonomous particles that interact via passive repulsion between off-center sites. The coupling of active
motion with the passive torque acting about the particle centers results in hybrid active–passive interactions
responsible for a macroscopic phase transition from an isotropic state to a polar-aligned state in systems of
particles with front interaction sites. We employ a continuum kinetic theory to explain that the emergence of long-
ranged orientational order, which occurs in unbounded domains at finite densities, can be externally activated
independently of the self-propulsion mechanism and drives a macroscopic particle flow in a direction selected
by symmetry breaking.
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Self-organization and collective motion are hallmarks of
soft active matter [1,2], from dense bacterial suspensions
[3,4] to biopolymer and motor-protein solutions [5–8] to
colloidal swimmers [9–11], rollers [12–14], and spinners
[15–17]. These phenomena, which derive from activity-driven
interparticle interactions, often take the form of chaotic spa-
tiotemporal patterns [18,19] as in bacterial turbulence [4] or of
cluster formation by motility-induced phase separation [20].
As a result, these systems typically suffer from strong spatial
heterogeneity, also known as giant number fluctuations, and
rarely display large-scale directional flow, other than in con-
fined geometries [21–26].

In this Letter we introduce a class of self-propelled au-
tonomous particles with off-centered repulsive interaction
sites. Suspensions of such particles are capable of macro-
scopic self-organization with system-size orientational order
and directional flow as well as damped concentration fluc-
tuations. An isotropic-to-polar phase transition occurs in
unbounded domains in the absence of guiding walls such that
the resulting macroscopic flow direction is self-selected by
symmetry breaking. These emergent dynamics are not only
of fundamental interest in nonequilibrium statistical physics,
but also for the design of active colloidal swarms capable of
performing controllable collective tasks in practical applica-
tions.

The off-centered interaction sites carried by the particles
can be either located away from (rear-site) or toward (front-
site) the direction of motion. As we demonstrate here, hybrid
active–passive interactions emerge from the coupling of active
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self-propulsion with the passive torque acting about the parti-
cle centers. In the case of rear-site particles, Nourhani et al.
[27] showed that these hybrid interactions cause an effective
attraction of passively repulsive particles leading to contact-
less particle aggregation. Our focus here is on suspensions of
front-site particles, which display radically different collec-
tive behavior, and on elucidating their emergent macroscale
dynamics.

The mechanism for self-propulsion is irrelevant to the
present discussion, as long as the swimmers are autonomous,
i.e., their direction of motion is not controlled by any exter-
nal field but is set solely through interparticle interactions.

FIG. 1. System schematic: autonomous self-propelled spherical
colloids with active velocity vs = vsn move on a two-dimensional
substrate and interact via off-centered interaction sites, e.g., magnetic
moments m. An external magnetic field B aligns the moments per-
pendicular to the plane of motion. Pair interactions between moments
lead to both forces and torques about the particle centers.
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An experimentally realizable system of front-site particles is
represented in Fig. 1 and consists of spherical Janus colloids
that are half coated with a thin magnetic material on the
hemisphere pointing in the direction n of active motion. Upon
application of a magnetic field B perpendicular to the plane of
motion, magnetic moments m (either induced by B or existing
permanently inside the magnetic layer) align with B and exert
repulsive forces on each other along with torques about the
particle centers. The magnetic torques reorient the particles so
they turn away from each other, while the active motion causes
them to part ways. Therefore, in the case of two swimmers
in isolation, these hybrid active–passive interactions tend to
repel the particles as well as reorient them in an antiparal-
lel way such that they swim apart, even in the presence of
thermal noise.

In a system at finite density, the particles cannot swim away
and must instead stay together and cooperate. While repul-
sive interactions are expected to damp density fluctuations,
the net effect of magnetic torques on large-scale behavior is
less obvious. On the one hand, the propensity for antipar-
allel orientations may allow for an isotropic phase. On the
other hand, a spatially uniform system reaches its minimum
magnetic energy when the particle directors are aligned in a
given direction. This hints at the existence of a macroscopic
polar phase in which a mean-field restoring magnetic torque
competes against orientational noise to maintain alignment.

We study these emergent phenomena within a continuum
kinetic theory framework. Our system consists of N identi-
cal self-propelled spherical particles of radius a undergoing
overdamped planar motion above a flat surface in a fluid of
viscosity η and magnetic permeability μ. The area fraction of
the particles is φ = πa2N/S, where S is the total area of the
system assumed to occupy a periodic square domain. Each
particle is characterized by its position x and unit director n,
which determines the direction of its active velocity vs = vsn,
with constant magnitude. Each particle carries a magnetic
moment m normal to the direction of motion (m ⊥ n) and
located at x + �n, where the magnet offset � has a constant
positive value less than the particle radius. The vertical mag-
netic field only aligns m upward but has no effect on the
direction of active motion n. The particles also perform Brow-
nian motion with translational and orientational diffusivities
Dt = kBT/6πηa and Do = kBT/8πηa3, respectively, where
kBT is the thermal energy.

In addition to active and thermal motions, the particles are
subject to magnetic interactions, which are repulsive between
individual magnets but also induce torques about the particle
centers due to the magnet offsets. The force and torque expe-
rienced by a particle at (x, n) due to the magnet on another
particle at (x′, n′) in a planar configuration are

F = 3μm2

4π

R
R5

, T = �n × F , (1)

where R = y + �(n − n′) and y = x − x′ are the magnet-to-
magnet and center-to-center relative positions, respectively.
The resulting linear and angular velocities in the over-
damped regime are F/6πηa and T/8πηa3, respectively.
The interplay of active self-propulsion, magnetic interac-
tions, and Brownian motion is captured by two dimensionless
groups: the Péclet number Pe = vsa/Dt compares advective

transport due to swimming to translational diffusion, while
� = D−1

o /(32π2ηa6/3μm2) is the ratio of the timescales for
orientational diffusion and magnetic rotations. Equivalently,
the product ��/a is the characteristic ratio of magnetic and
Brownian torques and quantifies the tendency of moment-
moment interactions to align the particle directors against
thermal orientational noise.

We investigate the system’s behavior in the continuum
limit, where its configuration is described by the density func-
tion �(x, n, t ) for finding a particle at x oriented toward n
at time t , which integrates to N over the entire system. We
also define the local concentration c(x, t ) = ∫

� dn, local
polarization p(x, t ) = c−1

∫
� n dn, and global polarization

P(t ) = V −1
∫

p dx. In the following we use dimensionless
variables and scale lengths with a, time with D−1

o , forces with
3μm2/4πa4, and the density function with N/S. The evolution
of the system is governed by the Fokker–Planck equation,

∂t� + ∇x · (ẋ� ) + [(I−nn) · ∇n] · (ṅ� ) = 0, (2)

with flux velocities (ẋ, ṅ) given by

ẋ = 4
3

(
Pe n + π−1φ � F − ∇x ln �

)
, (3)

ṅ = (I − nn) · (π−1φ �� F − ∇n ln �). (4)

The magnetic force exerted on a particle at location x with
orientation n by the rest of the system is given by

F(x, n, t ) =
∫∫

|y|�2
�(x′, n′, t )

R
R5

dn′ dx′ , (5)

where the integral over relative positions omits the excluded
volume region |y| < 2. Away from high concentrations where
� � |y|, we can expand the force (5) in powers of � up to
linear order,

Fi(x, n, t ) = [c 	 Ki] + � [c(n j − p j ) 	 K ji] + O(�2) , (6)

where [g 	 h] = ∫
g(x′)h(x−x′) dx′ is the spatial convolution,

and where the interaction kernels are Ki(y) = yi/|y|5 and
Ki j (y) = ∂Ki/∂y j . Note that φ and � always appear as a
product in Eqs. (3) and (4), with φ � describing the mean-field
strength of magnetic interactions.

We first simulate the governing equations (2)–(4) and
(6) inside a square periodic domain of width L using a
pseudospectral method [29], and results are showcased in
Fig. 2; also see video in Supplemental Material [28]. The
initial condition is given by the uniform isotropic distribution
�0(x, p) = (2π )−1 perturbed by uncorrelated white noise.
Figure 2(a) shows snapshots from two simulations with φ � =
2.55 (bottom row) and φ � = 10.2 (top row), and all other
parameters kept the same (� = 0.75, Pe = 5.0). At very short
times, both cases exhibit random fluctuations with locally
polarized patches pointing in random directions that were
present in the initial condition. In the first case (weak repulsive
interactions), these fluctuations decay and the system rapidly
relaxes towards the uniform isotropic state �0 with uniform
concentration c(x, t ) = c0 = 1 and zero polarization p(x, t ) =
0. In the second case (strong repulsive interactions), the polar-
ized patches gradually align and merge to reach a uniformly
polarized state with the same uniform concentration c(x, t ) =
c0 but with a finite nonzero polarization p(x, t ) = P∞ with

L040601-2



SPONTANEOUS DIRECTIONAL FLOW OF ACTIVE … PHYSICAL REVIEW E 103, L040601 (2021)

FIG. 2. (a) Snapshots of the polarization field p(x, t ) in two-dimensional periodic simulations of Eqs. (2)–(4), starting from a random
initial condition in a domain of width L = 20 with � = 0.75 and Pe = 5.0. In this figure, the parameter α is defined as α = πφ � �2/8. In
one case (top row, φ � = 10.2, α = 4.0), the system evolves to a uniformly polarized state, whereas in the other case it becomes uniformly
isotropic (bottom row, φ � = 2.55, α = 1.0). See video in Supplemental Material [28]. (b) Evolution of the global polarization P(t ) = |P(t )|
in simulations with increasing values of φ � (or, equivalently, α), with � = 0.75 and Pe = 5.0. (c) Evolution of the concentration variance
〈�c2〉 = 〈(c − c0 )2〉 for various combinations of α and Pe. (d) Steady-state polarization P∞ as a function of φ �� for various offset lengths
� and Péclet numbers Pe. (e) Steady-state polarization P∞ as a function of α, showing collapse of all the data with a supercritical pitchfork
bifurcation at αc = 2.0. The full curve shows a numerical solution of Eq. (7) for p0. (f) Growth rate σ = d ln P/dt of the global polarization
in simulations for various combinations of system size L and magnet offset �, showing a linear dependence on α in agreement with the linear
stability analysis prediction σ = α/2 − 1.

magnitude 0 < P∞ < 1. The direction of P∞ depends on ran-
dom fluctuations in the initial condition, since the system is
periodic with no preferred direction. This global polarization
is accompanied by a net macroscopic particle flow with mean
velocity U∞ = (4/3)Pe P∞, or vsP∞ in dimensional form.

Figure 2(b) shows the evolution of the global polariza-
tion P(t ) = |P(t )|, in simulations with increasing values of
φ �, for � = 0.75 and Pe = 5.0. When φ � � 5.09, the po-
larization decreases exponentially towards zero as the system
relaxes to isotropy. However, as soon as φ � � 5.09, P(t ) is
found to grow exponentially and ultimately plateau at P∞,
corresponding to the polar aligned state observed in Fig. 2(a).
Increasing φ � results in a larger growth rate σ = d ln P/dt
during the transient, as well as in a larger steady-state polar-
ization P∞.

Irrespective of φ �, the concentration variance 〈�c2〉 =
〈(c − c0)2〉 is found to decay in Fig. 2(c), with both isotropic
and polar systems reaching the uniform concentration c0 = 1
at long times. The decay, however, is found to be slower and
nonmonotonic in cases with growing polarization, especially
for large values of Pe. Indeed, the transient dynamics in this

case involve the growth and coalescence of polarized patches,
resulting in a nonsolenoidal polarization field that drives con-
centration fluctuations by self-propulsion via a source term of
the form ∝ Pe∇x · (cp) in the evolution equation for c(x, t )
[30]. This explains the temporary growth of 〈�c2〉, which de-
cays again once the patches have merged and the polarization
nears its global asymptote.

The steady-state polarization P∞ is plotted versus magnetic
torque strength φ �� for various magnet offsets � in Fig. 2(d).
For a given �, P∞ is zero at low values of φ � but is found
to bifurcate, above a given threshold, to a positive value in-
dependent of Pe. This indicates a phase transition from the
isotropic state to a globally aligned flowing state upon increas-
ing φ �, with a critical threshold that is delayed as the magnet
offset decreases. To explain these findings, we first seek an
exact steady solution of the Fokker-Planck equation that is
spatially uniform but has nonzero polarization: � = �(n),
with c = c0 and p = p0. In this case the solution is obtained
by setting the orientational flux (4) to zero, where the mean-
field magnetic force is simply F(n) = −π�(n − p0)/8. The
solution is of the Boltzmann type: �(n) ∝ exp(α n · p0),
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where α = πφ ��2/8. Applying the normalization
∫

� dn =
1 and polarization

∫
� n dn = p0 constraints provides an im-

plicit equation for the magnitude of the polarization:

0 = I1(αp0)−p0I0(αp0)=
∞∑

k=0

α2k p2k+1
0

4k!(k + 1)!

[α

2
−1−k

]
, (7)

where I0 and I1 are modified Bessel functions of the first
kind. The parameter α appears as the sole dimensionless
group controlling the orientation distribution. The behavior
of the solution can be gleaned from the series expansion on
the right-hand side. For values of α < 2, all the coefficients
in the series are strictly negative and the only solution is
p0 = 0 (isotropic). At α = 2, the coefficient of the linear
term becomes zero, indicating that p0 = 0 is a multiple root.
Finally, when α > 2, the first few coefficients in the expan-
sion are positive while the rest are negative. This implies a
nonmonotonic behavior with two roots at p0 = 0 and p0 > 0,
confirming the existence of a polar aligned state. In the limit
of α → ∞, the second root approaches 1, which corresponds
to full polarization in the limit of strong magnetic interactions.
These observations are summarized in Fig. 2(e), showing p0

obtained by numerical solution of Eq. (7) along with the
simulation data for P∞ in Fig. 2(d) replotted vs α. A collapse
of all the data is observed, with the bifurcation now occurring
at αc = 2. A uniform polar state thus exists for α > αc, i.e.,
φ ��2 > 16/π , which provides a simple criterion in terms of
area fraction φ, ratio �� of magnetic to Brownian torques,
and offset length �.

Our simulations with α > αc never relax to isotropy,
suggesting that the uniform isotropic equilibrium state
�0 = (2π )−1 in fact becomes unstable past the bifurca-
tion. This is confirmed by a linear stability analysis of
the Fokker–Planck equation, where we perturb the equilib-
rium as �(x, n, t ) = �0 + ε�̃(n, x, t ). In the linear regime,
the global polarization of the perturbation field P̃(t ) =
V −1

∫∫
�̃ n dn dx evolves as ∂t P̃ = (α/2 − 1)P̃, indicating

exponential behavior with growth rate σ = α/2 − 1. The uni-
form isotropic state is therefore linearly stable for α � αc = 2
and unstable otherwise. This prediction is consistent with

results from our simulations as shown in Fig. 2(f), where we
compare the prediction for σ with the numerical growth rate
d ln P/dt extracted from simulations. Excellent agreement is
found for a range of magnet offsets. Numerical data for two
different system sizes L suggests a weak effect of scale, with
the smaller system exhibiting a slightly lower growth rate.

To summarize, we have introduced a class of active parti-
cles with off-centered interaction sites capable of large-scale
self-organization. We investigated the phase behavior of sus-
pensions of front-site particles using a mean-field kinetic
model and demonstrated that unbounded systems with fi-
nite density undergo a transition from an isotropic phase
to a macroscopically flowing polar phase with damped
density fluctuations. The transition occurs by symmetry-
breaking with no preferred flow direction and can be activated
externally—by creation or removal of off-center magnets by
a magnetic field—and independently of self-propulsion. The
phenomenology uncovered here shares similarities with clas-
sic flocking models such as the Vicsek [31] and flying XY [32]
models, and is also reminiscent of other polar active systems
such as Quincke rollers [12,13]. However, the mechanism for
the phase transition discussed here is fundamentally differ-
ent and hinges on the subtle coupling of active motion and
off-center passive repulsion. While phoretic Janus colloids
with a magnetic hemisphere provide a simple experimental
realization for active–passive interactions [27], we stress that
the underlying physics is more general and is independent of
the specific mechanisms for propulsion and repulsion, which
could be achieved experimentally in a variety of ways. This
remarkable versatility and tunability may provide a unique
platform for studying fundamental mechanisms of polar active
collective motion, both theoretically and experimentally. Fi-
nally, the ability for these particles to self-organize and display
controllable large-scale polar order and directional flows also
suggests a new paradigm for the design of programmable par-
ticle swarms capable of performing collective tasks involving
coherent motions.
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