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The dynamics and transport properties of Brownian semiflexible filaments suspended
in a two-dimensional array of counter-rotating Taylor-Green vortices are investigated
using numerical simulations based on slender-body theory for low-Reynolds-number
hydrodynamics. Such a flow setup has been previously proposed to capture some
of the dynamics of biological polymers in motility assays. A buckling instability
permits elastic filaments to migrate across such a cellular lattice in a “Brownian-
like” manner even in the athermal limit. However, thermal fluctuations alter these
dynamics qualitatively by driving polymers across streamlines, leading to their fre-
quent trapping within vortical cells. As a result, thermal fluctuations, characterized
here by the persistence length, are shown to lead to subdiffusive transport at long
times, and this qualitative shift in behavior is substantiated by the slow decay of
waiting-time distributions as a consequence of trapping events during which the fil-
aments remain in a particular cell for extended periods of time. Velocity and mass
distributions of polymers reveal statistically preferred positions within a unit cell that
further corroborate this systematic shift from transport to trapping with increasing
fluctuations. Comparisons to results from a continuum model for the complemen-
tary case of rigid Brownian rods in such a flow also highlight the role of elastic
flexibility in dictating the nature of polymer transport. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4812794]

I. INTRODUCTION

Semiflexible elastic filaments, such as DNA, actin, and microtubules, play a central role in a wide
variety of biological processes from locomotion1 to reproduction2 to cell division.3 The analysis
of their dynamics and transport properties in microscale fluid flows is therefore of paramount
importance for the understanding and accurate modeling of these processes. The case of long-chain
polymers such as DNA has been studied in detail in the past,4, 5 and both experiments and numerical
simulations have established that the dynamics of such chains are governed by the competition of
entropic forces that favor coiled configurations vs viscous flow forces that can cause unraveling and
stretching.4, 6–8 This competition is at the origin of the viscoelastic properties of DNA solutions,4, 9

which can lead to hydrodynamic instabilities10, 11 and spatiotemporally chaotic flows.12 The case
of shorter and stiffer filaments with long persistence lengths, such as actin and microtubules, has
received much less attention and is of interest to us here. For short-chain semiflexible filaments, the
dynamics result mainly from the interplay between internal elastic forces that resist bending and
ensure inextensibility, and external viscous forces that can cause deformations and buckling.

Much like a macroscopic beam, an elastic filament under compression along its backbone
can undergo a buckling instability if compressive stresses overcome the elastic restoring force that
resists bending. Such buckling events were first noted by Becker and Shelley13 in simulations of
non-Brownian flexible fibers in simple shear flow at high enough strain rate, and the storage and
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subsequent release of elastic energy during this process has been shown to lead to first normal stress
differences,13, 14 as are indeed known to arise in many polymer solutions.9

These buckling events are more easily analyzed in irrotational linear flows such as planar
extensional flows, where a filament located at the hyperbolic stagnation point and aligned with the
axis of compression of the flow is subject to a compressive tensile force. Using linearized Euler-
Bernoulli elasticity and slender-body theory15 for Stokes flow, Young and Shelley16 showed that
this situation is amenable to a linear stability analysis and found that beyond a critical strain rate
a non-Brownian elastic filament undergoes a compressive buckling instability analogous to Euler
buckling in beams, and this instability has come to be known as the stretch-coil transition.16 As
the strain rate (and hence the tension in the filament) increases, higher mode shapes can become
unstable and corresponding thresholds for each successive filament shape have been calculated.16

This buckling instability appears to be a generic feature of strain-dominated flows when the polymer
is aligned along a direction of compression, and the case of an elastic filament tethered normal to a
rigid wall at the stagnation point of a compressive extensional flow was also recently discussed by
Guglielmini et al.17

The results of the stability analysis of Young and Shelley,16 though strictly valid in the absence
of thermal fluctuations, were also recently tested experimentally by Kantsler and Goldstein18 using
actin filaments trapped at the stagnation point of a microfluidic cross-slot device, where buckling
was indeed observed. A succession of mode shapes was also reported with increasing strain rate.
The instability, however, no longer occurred at a critical flow strength but was seen to gradually
transition from the straight (though susceptible to thermal fluctuations) state to the buckled state in
the vicinity of the theoretical athermal threshold. To quantify the extent of buckling, Kantsler and
Goldstein tracked the mean end-to-end distance as a function of the imposed strain rate. As opposed
to the sharp cusp expected at the instability threshold in the non-Brownian limit, they found that
thermal fluctuations strongly round the transition, as is already known to be the case for classic Euler
buckling.19

Such buckling events can be a significant driving factor behind transport properties of elastic
filaments. One example of this effect comes from actin motility assays,20–22 in which actin filaments
are transported over a two-dimensional carpet of wall-tethered myosin molecular motors. These
assays are typically characterized by motility defects, wherein a polymer gets pinned at its leading
tip causing it to buckle in plane and curl up towards the tip.20, 21 The pinned tip eventually breaks free,
allowing the filament to continue to move in a different direction. In cases of high myosin density, the
result of these dynamics is a meandering motion with every instance of buckling randomly changing
the direction the polymer is headed. The prevalence of polymer buckling in complex flows of elastic
filaments has also been reported in other biophysical systems, such as two-dimensional suspensions
of microtubule bundles and kinesin clusters,23 where stretching of the bundles as a result of the
relative sliding of individual microtubules under the action of the kinesin motors can cause them to
deform and buckle.

A simple illustration of the relation between buckling and spatial transport was also provided by
Young and Shelley,16 who proposed that a periodic lattice of steady counter-rotating Taylor-Green
vortices in a viscous incompressible fluid can capture some of the dynamics observed in actin motility
assays. The vortices create hyperbolic junctions connected by straight streamlines, defining “cells”
that enclose an entire family of closed curved streamlines as illustrated in Fig. 1. An initially straight
filament placed along one of the edges is transported along the straight streamline until it approaches
a stagnation point. There, the flow is locally an extensional flow, and the aforementioned linear
stability analysis predicts a buckling event if the local strain rate is sufficiently high. The “stretched”
filament is expected to slow down and buckle or “coil” (analogous to pinning and curling in actin
motility assays), and to subsequently relax to a stretched configuration in an arbitrarily chosen
perpendicular direction. Using non-Brownian simulations, Young and Shelley16 indeed showed that
an elastic filament in such a flow moves across the lattice like a random walker executing arbitrary
π /2 turns at each hyperbolic junction. On long time scales, such a random walk was found to be
diffusive in the absence of thermal fluctuations, at least over a certain range of flow strengths.
Recent experiments by Wandersman et al.24 and by Quennouz25 using macroscopic elastic fibers in
an electrodynamically generated cellular flow similar to that used by Young and Shelley16 indeed
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FIG. 1. Snapshots from a simulation with µ̄ = 80 000, "p/L = 1000, and w = 1, showing the buckling instability at the
stagnation points at cell corners.

verified predictions from their simulations and clearly showed the relevance of the stretch-coil
transition on the dynamics. By tuning the flow strength and mechanical properties of the fibers,
they24, 25 measured the onset and probability of buckling in terms of an elastoviscous number Sp

and observed good agreement with the predictions of the stability analysis16 within experimental
limitations. They confirmed that flexibility facilitates transport between and across cells as a result
of buckling, and observed random trajectories akin to those obtained by Young and Shelley,16 albeit
on shorter scales owing to the limited size of the flow device used in the experiments.

A central question that has yet to be addressed and is directly relevant to the transport of
biological polymers such as actin is the effect of thermal fluctuations on the dynamics, and this work
is the first comprehensive attempt at addressing this issue. Using numerical simulations based on a
slender-body model with a stochastic Brownian force distribution obeying the fluctuation-dissipation
theorem, we systematically analyze the effect of Brownian fluctuations (measured by the persistence
length of the polymer) on the dynamics of isolated chains in a periodic Taylor-Green vortex flow.
Our main finding is that in the limit of infinite dilution, fluctuations have a tendency to cause the
more frequent trapping of the filaments inside cells, thereby hindering their ability to diffuse in the
plane of the flow; in fact, we even observe a transition to subdiffusive transport as the persistence
length is decreased. Details of the polymer model and simulation method are provided in Sec. II.
We discuss results in Sec. III, where we analyze the effect of fluctuations on transport properties,
velocity distributions, and mass distributions of the filaments, and also compare our results to the
case of rigid Brownian fibers. We conclude in Sec. IV.

II. POLYMER MODEL

A. Slender-body equations

Slender-body theory for low-Reynolds-number hydrodynamics dates back to Batchelor,15 and
was developed by asymptotically matching the near-field flow around a slender particle represented
as an infinitely long cylinder to the far-field flow driven by a line distribution of force singularities
along the particle axis. In this work, we consider a local version of the theory14, 16 that accounts for
anisotropy of drag due to the shape of the filament, but does not capture hydrodynamic interactions
within a polymer or between polymer chains.

Let a filament of length L be parameterized by an arclength s ∈ [0, L] such that x(s)
= (x(s), y(s), z(s)) represents the polymer centerline. We define a slenderness ratio ε = r(L/2)/L
where the polymer is assumed to have a circular cross-section with radius r(s). Then, the local
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slender-body equation for the dynamics of the filament centerline is written as

8πµ

(
∂x(s, t)

∂t
− u0(x(s, t), t)

)
= −!(s) · f(s). (1)

Here, µ denotes the fluid viscosity, u0(x(s, t), t) is the background fluid velocity felt by the polymer
at x(s, t), !(s) is the local mobility operator, and f(s) is the net force acting on the filament at
parametric position s. The mobility operator is given by

!(s) = − ln(ε2e)(I + p̂(s)p̂(s)) + 2(I − p̂(s)p̂(s)), (2)

where p̂(s) = xs(s) is the local unit tangent vector to the polymer backbone, and p̂p̂ denotes a dyadic
product.

The forces acting on the filament are threefold: bending forces due to the elasticity of the
polymer backbone, line tension that acts to keep it inextensible, and Brownian forces due to thermal
fluctuations in the medium:

f(s) = −(σxs)s + κxssss + fbr , (3)

where subscripts denote differentiation with respect to the concerned variable. The first two terms
follow directly from Euler-Bernoulli elasticity, with σ (s) being the non-uniform tension felt by the
filament, and κ being the bending modulus. The last term obeys the fluctuation-dissipation theorem26

of statistical mechanics:
〈
fbr (s, t)

〉
= 0, (4a)

〈
fbr (s, t)fbr (s ′, t ′)

〉
= 2kB T !−1δ(s − s ′)δ(t − t ′), (4b)

where kB is Boltzmann’s constant and T is the absolute temperature. Note that the line tension σ (s),
which acts as a Lagrange multiplier to keep the filament inextensible, is still unknown at this point.
It is obtained by imposing a local inextensibility condition, i.e., by enforcing that the unit tangent
vector maintains magnitude. Assuming that the arclength parameter s is a material property, this
permits us to perform the following manipulation:

xs · xs = 1 ⇒ (xs · xs)t = 0 ⇒ xs · xts = 0. (5)

Equation (1) can be used for xt here, leading to an inhomogeneous ordinary differential equation
for σ (s) that is coupled to the centerline equation,14 and the two can be solved together to obtain
the line tension and the position x(s, t) of the polymer backbone. The ends of the polymer are
“free,” i.e., there are no forces or moments acting at the ends. This transcends into the boundary
conditions:14, 18, 26

xss |s=0,L = xsss |s=0,L = σ |s=0,L = 0. (6)

B. Non-dimensionalization

All lengths are made dimensionless by L, deterministic forces by κ/L2, and time by 8πµL4/κ .
Following Munk et al.,26 Brownian forces are scaled by

√
(L/"p)κ/L2, where the persistence length

"p is defined below; this allows the dimensionless Brownian force distribution to be a function
only of the mobility operator. The external flow field is made dimensionless by L γ̇ , where γ̇

is the characteristic flow strength associated with the background fluid velocity. The centerline
equation (1) then becomes

∂x(s, t)
∂t

= µ̄u0(x(s, t), t) − ! ·
[

−(σxs)s + xssss +
√

L
"p

ξ

]

, (7)

where all variables are now dimensionless, and ξ denotes the dimensionless noise term. The tension
equation obtained from Eq. (5) can also be made dimensionless after further manipulations using
properties of the unit tangent vector.14
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We have introduced two dimensionless groups that control the dynamics of the problem. The
first is an effective viscosity µ̄, which is the ratio of the characteristic viscous drag to the elastic
bending force in the polymer backbone:

µ̄ = 8πµL2γ̇

κ/L2
, (8)

and can also be interpreted as a dimensionless flow strength. This parameter is equal to 32Sp and
4π4ln (1/ε2e)) in the notations of Wandersman et al.24 and of Kantsler and Goldstein,18 respectively.

The second dimensionless group is the reduced persistence length:

"p

L
= κ/L2

kB T/L
= κ

kB T L
, (9)

which can be interpreted as the ratio of the elastic bending forces to thermal forces. In other words,
"p is the length scale over which these forces strike a balance and the local tangent vector becomes
uncorrelated. A large value of "p hence implies large bending resistance to thermal fluctuations, while
smaller values represent floppier polymer backbones. To put things in perspective, the persistence
length of microtubules as calculated using Eq. (9) above is found27 to be ∼5 mm, while that of actin
filaments18 is ∼18 µm. As the length of these biopolymers is of the order of a few micrometers,
the reduced persistence length "p/L for microtubules and actin is of the order of O(100–1000) and
O(1–10), respectively.

The dimensionless centerline equation (7) along with the equation for the tension are solved
numerically using a Brownian dynamics algorithm extending the method previously developed
by Tornberg and Shelley14 for non-Brownian elastic filaments. The aspect ratio is chosen to be
ε = 0.01 for the entire work presented here. The algorithm has been tested to accurately predict
equilibrium properties of worm-like chain polymers in Brownian solvents, and details will be
presented elsewhere.

C. Cellular flow and the buckling instability

In this study, we consider the transport of a flexible Brownian filament in a prescribed flow field
consisting of a two-dimensional periodic array of counter-rotating Taylor-Green vortices:

u0(x) = (sin(x/w) cos(y/w),− cos(x/w) sin(y/w), 0), (10)

where x and y are made dimensionless with L as usual, and w = W/π L is the dimensionless cell
size (see Fig. 1). Note that this imposed flow field is two-dimensional, while we will be allowing
for three-dimensional motion of the polymer arising solely from thermal fluctuations, unlike in the
previous simulations of Young and Shelley16 and the experiments of Wandersman et al.,24 where
the filaments were confined on a two-dimensional interface.

As was described earlier, a polymer in the vicinity of one of the stagnation points in such a flow
experiences a locally hyperbolic extensional flow. Within this approximation, the linear stability
results for the buckling instability should hold, for which, in the language of this work, the first
(and from here on, the “critical”) threshold16 is µ̄c ≈ 1250. It can be shown that increasingly higher
buckling modes become unstable above subsequent thresholds (µ̄ ≈ 6400, 16 000, 30 000, . . . ).
These thresholds, again, remain broadly consistent even in the presence of thermal fluctuations.18

III. RESULTS AND DISCUSSION

A. Polymer transport: Diffusion vs subdiffusion

In the following, we focus entirely on flow strengths that exceed the critical threshold (µ̄ > µ̄c).
The objective is to systematically describe the change in transport properties of a polymer in a
cellular flow due to thermal fluctuations, in a regime where buckling events at the hyperbolic points
of the vortex array already lead to “Brownian-like” transport across the lattice.16
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FIG. 2. Center-of-mass trajectories of polymers: (a)–(d) correspond to four different cell sizes W at the same µ̄ = 20 000
and "p/L = 1000, each showing four different trajectories; (e) shows the case of a single polymer with W = π L and
µ̄ = 20 000, but "p/L = 10 (enhanced online). [URL: http://dx.doi.org/10.1063/1.4812794.1]

The center-of-mass trajectories of a few representative cases are illustrated in Fig. 2 and the
accompanying video. The key observation is that while a larger reduced persistence length allows
polymers to migrate farther away from their initial position (the origin, in the case of the examples
in Fig. 2), those with smaller reduced persistence lengths exhibit much slower transport from their
initial position. Fig. 2(e) for the low value of "p/L = 10 shows a characteristic trap-and-go motion
wherein a polymer appears to be trapped in a cell for significantly longer time periods before
escaping to another neighboring cell. This is qualitatively different from previous observations in
non-Brownian experiments24 and simulations,16 which are comparable to the case of "p/L = 1000. In
this context, Young and Shelley16 calculated a “transport region” enveloping the unit cell boundary
that recorded a trapping probability of less than 50%. Their observation was that for a range of
values of µ̄, filaments placed in this region would migrate across the lattice like a random walker
and undergo a diffusive motion in space at long times as a result. Our simulations for "p/L = 1000
show a similar behavior [Figs. 2(a)–2(d)], with relatively rare trapping occasions. This suggests that
transport in this regime is akin to the non-Brownian case, with thermal fluctuations only changing
the outcome from transport to trapping in very few cases. The dynamics are qualitatively different
when "p/L = 10, where we find that such a transport region cannot be defined. The effect of thermal
fluctuations is very strong in this case, and as seen in Fig. 2(e) polymers often become trapped and
migrate deep into a cell, only to jump out and transition to a neighboring cell at a later time and
further proceed in this trap-and-go fashion. It should be noted here that for all our simulations, the
polymer is released at the cell boundaries: we expect the probability of such trapping events to be
significantly higher if the filament were released near the center of a cell.

It is interesting to compare the dynamics seen in Fig. 2 and in the accompanying video to that
of a particle moving randomly across a periodic lattice with specified distributions of length and
frequency of jumps.28, 29 Jumps of unit cell length at a fixed rate give rise to the traditional random
walk, one that approaches the behavior predicted by a diffusion equation. If the jumps follow a
heavy-tailed length distribution but still occur at a fixed rate, then it leads to so-called Lévy flights
characterized by superdiffusion. The complementary case is that of “fractal time,”28 which applies
particularly to the behavior seen in Fig. 2(e), where a walker always moves a unit cell length but waits
disparate amounts of times between jumps. For such random walks, the mean square displacement

http://dx.doi.org/10.1063/1.4812794.1
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FIG. 3. (a) Mean square displacement d2(t) of the filament center-of-mass as a function of time at µ̄ = 20 000 for three
values of "p/L, where the long-time behavior follows an approximate power law d2(t) ∝ tα . (b) Dependence of the exponent
α on the reduced persistence length "p/L. (c) Distribution of waiting times, defined as periods of time spent by a filament
inside a given cell, in simulations with µ̄ = 20 000 and "p/L = 10.

is slower than that of a diffusive process, and numerical studies29 have reported such waiting times
leading to subdiffusion.

The diffusivity of polymers across the cellular lattice in the current problem can be characterized
by the mean square displacement of the center of mass x0(t) of a chain from its initial position:
d2(t) = 〈|x0(t) − x0(0)|2〉 (Fig. 3). Recall that we only consider isolated polymers, corresponding
to the limit of an infinitely dilute suspension where the effects of the disturbance velocity due to
other chains on the transport properties are negligible. These results are ensemble averages of 50
simulations for each value of "p/L shown, and were all obtained for µ̄ =20 000. The initial condition
is the same but thermal fluctuations soon change the long-time dynamics in each simulation. For
"p/L = 1000, we observe a roughly linear increase in the mean square displacement with time,
consistent with the case of non-Brownian filaments.16 The initial climb in the beginning corresponds
to the motion of the polymer moving along a cell boundary until it encounters the first stagnation
point. For subsequent smaller values of "p/L = 100 and 10, the initial climb is larger because the
polymer no longer moves along the cell edges but rather is pushed further in towards the center of the
cell by thermal fluctuations, thereby increasing the average distance traversed before it encounters
the first stagnation point. Beyond this initial climb, however, the growth of the mean square displace-
ment exhibits a clear subdiffusive behavior of the form d2(t) ∝ tα with α < 1. Within the timespan
of the simulations, we observe that the slope of d2(t) in a log-log plot in fact reduces to almost
zero in these cases. The filament tends to become trapped in almost every cell it comes by, and the
occasional jump from cell to cell is seen in the very small positive slope in Fig. 3(a). In many cases,
the filament even remained trapped in a given cell until the simulation had to be stopped. The precise
dependence of the exponent α on the persistence length is shown in Fig. 3(b), where it is seen to
transition from nearly zero for low values of "p/L to approximately 1 for high persistence lengths.

This transition from diffusive to subdiffusive transport with decreasing "p/L can be further
characterized by considering the waiting-time distribution of the polymer in a cell, shown for
"p/L = 10 in Fig. 3(c). The waiting time τW is defined as the time a polymer spends within a
given cell (quantified by its center-of-mass position). While moving along the boundary between
cells, the center-of-mass often abruptly jumps back and forth between them. We discard these small
values of τW by introducing a cutoff on the recorded waiting times: only those values of τW that
are above the average time it takes a polymer to go on an entire loop around a cell are considered.
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Also, we discard cases when the polymer gets trapped at the center of the cell and stays there for
the entire span of the simulation. This distribution for the smaller values of the reduced persistence
length displays approximately a power-law behavior that goes as ,(τW ) ∝ τ−1

W . Such distributions of
waiting times that follow a non-integrable form of ,(τW ) ∝ τ

−(1+α)
W with α < 1 have been predicted

theoretically30 and reported in various physical systems31, 32 to result in subdiffusion with a mean
square displacement growing as tα . According to this prediction, the exponent α is expected to be
nearly zero in the case of "p/L = 10, which is indeed very close to what is observed for the slope
of d2(t) in Fig. 3(a). This qualitative change in the waiting-time distribution clearly confirms that
polymer trapping is indeed enhanced by thermal fluctuations.

B. Velocity distributions

In the actin motility experiments of Bourdieu et al.,20, 21 the frequency distribution of the
velocity of the polymer was found to be bimodal at select temperatures. This bimodality was
attributed to the “slip-stick” nature of polymer transport, in which periods of regular motion at a
roughly constant velocity alternate with states when the polymer becomes pinned and the velocity
is almost zero. In the present model, similar dynamics are expected in the case of "p/L = 1000,
when Brownian motion plays a negligible role in disturbing this cycle of motion-and-stagnation.
This is indeed the case, as seen in Fig. 4(a) where we show the normalized frequency distribution
of the center-of-mass velocity magnitude |x0

t |, which agrees qualitatively with the experiments21

and quantitatively with non-Brownian simulations.16 One noticeable difference is the presence of a
minor peak near 0.7, which represents the rare occasions when the polymer does get trapped in a
cell. The value of |x0

t | = 0.7 for the velocity in the trapped state is not very obvious, but one can
see that it approximately corresponds to the largest ring of uniform velocity within a particular cell
[Fig. 4(b)].

Thermal fluctuations change this picture drastically, as seen for lower values of the reduced
persistence length. For "p/L = 100, our simulations show a sharp velocity selection near 0.7. This
corresponds to a predominance of trajectories in which the polymer becomes trapped in a ring near
the part of the cell where the external flow is of this magnitude, and will be further elucidated in
the mass distribution results in Sec. III C. For "p/L = 10, this peak persists but the distribution
is more spread-out towards lower velocities, i.e., the polymer now preferentially becomes trapped

FIG. 4. (a) Frequency distribution of the magnitude of the center-of-mass velocity |x0
t | for various values of "p/L at µ̄ =

20 000. (b) Contours of the fluid velocity magnitude inside a given cell, indicating that the value of |x0
t | = 0.7 corresponds

approximately to the largest ring of uniform velocity within the cell.
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FIG. 5. Probability distributions of mass of the polymer in a unit cell at µ̄ = 20 000 for different values of "p/L. Probabilities
are normalized to be unity for a uniform distribution.

in positions ranging all the way from the center of the cell to the ring of maximum uniform
velocity.

C. Mass distribution of polymers

The preferred position of polymers inside the unit cell can be analyzed by considering the
probability distributions of the mass of the entire polymer (which is assumed to be homogeneous
along its backbone). Fig. 5 shows such distributions averaged over at least 50 simulations for three
values of "p/L at µ̄ = 20 000. The plots are averaged across all cells that a polymer happens to be
in, and are normalized to be unity for a uniform distribution.

The distribution for "p/L = 1000 is unsurprising, as we recollect that this case is almost identical
to the non-Brownian simulations16 and the polymer is found to spend almost all of its time along the
cell boundaries. Here again, the probability peaks near the corners, which reflects the slowing-down
of the chain and time spent during buckling events around stagnation points (see Fig. 1). The floppier
case of "p/L = 100 looks qualitatively different and shows a characteristic ring of probability at a
distance from the cell boundary. Here, we recall from the velocity distributions (Sec. III B) that
the preferred center-of-mass velocity of a trapped polymer in this case is about 0.7. The ring that
the center-of-mass must be on for this to happen is to the immediate outside of the concentration
peak seen in Fig. 5(b). This shift inward is due to the cases when the polymer is aligned radially,
thereby increasing the probability of finding a part of the chain in a circle of smaller radius. It is
quite remarkable, however, that the polymer very rarely goes deeper into the cell beyond this ring,
as shown by the low probability near the center. The floppiest case of "p/L = 10 is qualitatively
different from both previous cases. Here, the polymer selects velocities that place it closer to the
center (Sec. III B) and the mass distribution indeed peaks there. Polymer centers-of-mass still move
in rings around the center of the cell, but the aforementioned effect of radial alignment causes the
peak to be at the center of the cell in this case. It should be noted when considering the distributions
of Fig. 5 that they represent averages over a finite period of time and that their shape might change
slightly if the simulations were run longer; also, they were obtained for polymers released along
one of the cell edges and would likely show a stronger probability near the cell center for filaments
released at arbitrary locations.

D. Cellular transport of rigid rods: A continuum approach

We have thus far demonstrated that flexibility affects transport properties in two distinct ways: on
the one hand, it allows the filaments to buckle at the hyperbolic points, which facilitates their transport
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across the lattice; on the other hand, it can also increase the importance of thermal fluctuations (by
decreasing the persistence length), which has the opposite effect of driving polymers towards cell
centers where they can become trapped. To further elucidate the effect of polymer flexibility in this
transport process, we also approach the complementary problem of rigid Brownian rods from a
continuum perspective. We do so by solving a conservation equation for the probability distribution
function -(x0, p̂, t) of a single rod in a cellular flow, where the configuration of the rod is now
described by its center-of-mass position x0 and a unit orientation vector p̂. Neglecting hydrodynamic
interactions and limiting ourselves to two spatial dimensions (so that the rod orientation in the plane
of the flow can be described by a single angle θ ), we write down a Fokker-Planck equation33 for the
configuration of a particle as

∂-

∂t
+ ∇x · (ẋ0-) + ∂ (θ̇-)

∂θ
− ∇x · (D · ∇x-) − dr

∂2-

∂θ2
= 0, (11)

where D and dr denote the translational and rotational diffusivities, respectively, and dots are meant
to represent time derivatives. This conservation equation merely balances the time rate of change of
the probability distribution - with advection due to the effect of the external flow, and diffusion due
to thermal fluctuations.

For a slender Brownian rod-like particle of length L and cross-sectional radius b, the rotational
diffusivity dr can be expressed as33 dr = 3kBTln (1/ε)/πµL3 where we use the same definition
of the aspect ratio ε = b/L as in Sec. II. The translational diffusivity tensor D is a sum of the
contributions from the direction along the orientation of the rod, and that perpendicular to it.
Given the translational diffusion coefficients33 D‖ = kBTln (1/ε)/2πµL and D⊥ = kBTln (1/ε)/4πµL
for motions in directions parallel and perpendicular to the rod axis, respectively, we express the
diffusivity tensor as D = D‖p̂p̂ + D⊥(I − p̂p̂), which simplifies to

D = kB T ln(1/ε)
4πµL

(I + p̂p̂). (12)

Noting that this tensor only depends on the orientation of the rod and not on its position, and by
virtue of its symmetry, we may write: ∇x · (D · ∇x-) = D : ∇x∇x-.

The Fokker-Planck equation (11) requires knowledge of the translational and rotational fluxes,
and these are evaluated based on slender-body theory in the Appendix. The final form of the
conservation equation is then

∂-

∂t
+ Pe

[
∇x ·

{
-

∫ 1/2

−1/2
u(x + sp)ds

}
+ ∂

∂θ

{
12- êθ · (I − p̂p̂) ·

∫ 1/2

−1/2
su(x + sp)ds

}]

+ ln ε2
[
∇2

x - + p̂p̂ : ∇x∇x- + 12
∂2-

∂θ2

]
= 0, (13)

where we have introduced a Péclet number capturing the relative importance of advection by the
flow to thermal diffusion:

Pe = 8πµγ̇ L3

kB T
= µ̄

"p

L
. (14)

We note that this Péclet number also formally corresponds to the product of the dimensionless
viscosity µ̄ and reduced persistence length "p/L, though neither quantity is defined on its own in the
case of a rigid rod (µ̄ → 0 and "p/L → ∞). To determine the steady probability distribution function
-(x0, p̂), we integrate the conservation equation (13) by time-marching using an Adams-Bashforth
scheme until it converges to a steady state. The imposed velocity u is of the same form as in
Eq. (10), the aspect ratio is again set to ε = 0.01, and the problem is solved on a four-cell unit
(W = π L here) of {x, y} ∈ [− π , π ]2 with periodic boundary conditions.

From the discussion of the buckling instability, we expect that polymers with rigid backbones
(alternately interpreted as µ̄ < µ̄c) should not migrate past the cell they are initially placed in, a
prediction indeed borne out by the experiments of Wandersman et al.24 The numerical solution to
the Fokker-Planck equation (13) corroborates this observation, as is seen in the steady probability
contours of Fig. 6: for all values of Pe we considered, the probability peaks at the center of the cell
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FIG. 6. Steady-state solution of the Fokker-Planck equation (13) at Pe = 10 000 for rigid rods of aspect ratio ε = 0.01.

at steady state, with negligible presence near the cell boundaries. Unsurprisingly, this migration is
found to become stronger with increasing Péclet number.

This case of rigid rods, characterized by a systematic drift towards and trapping near the center
of the cells as seen in Fig. 6, can be contrasted to the case of elastic filaments to highlight the
importance of filament flexibility in this transport process. Indeed, recalling that the Péclet number
as defined here can be formally written as a product of the effective viscosity with the dimensionless
persistence length, we compare distributions of filament configurations in two distinct simulations
of semiflexible polymers at the same value of Pe but with different appropriately chosen values of
µ̄ and "p/L (i.e., with different values of the bending resistance). We first set these parameters to
µ̄ = 1000 and "p/L = 1000 (corresponding to Pe = 106) and show a superposition of representative
filament configurations in Fig. 7(a). At this value of µ̄, the flow is not strong enough to induce
buckling, and we indeed observe that the filament, which is hardly deformed by the flow, spends
most of its time near the center of the cell, which follows from the prediction of the rigid rod
theory in Fig. 6. However, the distribution of filament configurations looks qualitatively different in
Fig. 7(b), where we choose parameter values of µ̄ = 10 000 and "p/L = 100 (the product of which
is the same as in the previous case) that do allow buckling. Here, the dynamics are found to differ
from the predictions of the rigid rod theory, and a significant probability of finding the filament
near the cell boundaries is clearly seen. As expected, we observe larger filament deformations, and
fully buckled configurations are also seen near the corners of the cell. This increased probability of
presence near the cell boundaries leads to more probable jumps across cells, which in turn results in
more efficient transport across the cellular lattice as discussed previously.

FIG. 7. Characteristic distributions of filament configurations in a unit cell with (a) µ̄ = 1000 and "p/L = 1000 and (b) µ̄ =
10 000 and "p/L = 100.
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IV. CONCLUDING REMARKS

We have used numerical simulations based on a slender-body model to study the dynamics
and transport properties of semiflexible polymers in a periodic two-dimensional cellular flow in the
presence of thermal fluctuations. This work extends previous theoretical16 and experimental24, 25

studies that considered macroscopic non-Brownian filaments, and may also provide insight into
some of the dynamics previously reported in actin motility assays.20, 21 As in the non-Brownian case,
the strong compressive flows that occur near the hyperbolic stagnation points at the cell junctions
can cause buckling of the filaments, which facilitates their transport between cells resulting in an
effective two-dimensional random walk. However, we find that thermal fluctuations, quantified by
the inverse of the dimensionless persistence length, tend to cause the filaments to drift towards
and become trapped inside vortical cells for long periods of time. These frequent trapping events
significantly hinder the spatial transport of the polymers, which shifts from diffusive to subdiffusive
as fluctuations become significant, and this change in behavior is also evinced by the velocity and
mass distributions of the chains. By comparing our simulation results to a simple theory for rigid
Brownian rods, we also highlighted the subtle effect of flexibility on the transport properties. On
the one hand, some level of flexibility is critical for the effective transport across cells as it enables
buckling; on the other hand, very floppy filaments with short persistence lengths are strongly affected
by thermal fluctuations, which cause their frequent trapping and hinder their transport across the
lattice.

The model flow field considered in this work (periodic lattice of steady Taylor-Green vortices),
through its simplicity, allowed us to arrive at a simple qualitative description of the dynamics in terms
of transport and buckling along strain-dominated directions vs drifting and trapping inside vortical
regions. It remains to be seen how this description would carry over to more complex flows, and in
particular to unsteady chaotic flows with a spectrum of length scales such as a turbulent flow. While
we expect the basic features of the dynamics observed here to also arise in that case, the net effect
of flexibility and of thermal fluctuations on macroscopic rheological and transport properties34, 35 in
complex flow fields remains difficult to anticipate.
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APPENDIX: FLUX VELOCITIES FOR THE FOKKER-PLANCK EQUATION

The conservation equation (11) has as unknowns the flux velocities of the rod. For this, we turn
to the leading terms in the slender-body equation (1), now written in terms of the center-of-mass
position and orientation of the particle. For a rod of aspect ratio ε = b/L as before and parameterized
by s ∈ [−L/2, L/2], the position of a point along the rod is now written as x0 + sp̂. We then have to
leading order in ln ε,

ẋ0 + s ˙̂p − u0(x0 + sp̂) = ln ε

4πµ
(I + p̂p̂) · f(x0 + sp̂). (A1)

Integrating Eq. (A1) across the length of the rod and requiring that the total hydrodynamic force
acting on the particle be zero gives the translational flux velocity:

ẋ0 = 1
L

∫ L/2

−L/2
u(x0 + sp̂)ds. (A2)

In order to determine θ̇ , we multiply Eq. (A1) by s and then integrate with respect to s giving

˙̂p
L3

12
−

∫ L/2

−L/2
su(x0 + sp̂)ds = ln ε

4πµ
(I + p̂p̂) ·

∫ L/2

−L/2
sf(x0 + sp̂)ds. (A3)
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Since the angular flux is purely in the orthoradial directions, we pre-multiply Eq. (A3) with (I − p̂p̂),
and it follows that

˙̂p
L3

12
= (I − p̂p̂) ·

∫ L/2

−L/2
su(x0 + sp̂)ds − ln ε

4πµ
p̂ ×

∫ L/2

−L/2
p̂ × sf(x0 + sp̂)ds. (A4)

Noting that the last term in Eq. (A4) represents the net torque acting on the particle, which is zero
for a freely suspended particle, we obtain the final form of ˙̂p:

˙̂p = 12
L3

(I − p̂p̂) ·
∫ L/2

−L/2
su(x0 + sp̂)ds. (A5)

The angular velocity as required in Eq. (11) is then obtained as θ̇ = ˙̂p · êθ , where êθ =
(− sin θ, cos θ ).

The Fokker-Planck equation is now closed, with all terms known. We non-dimensionalize
Eq. (11) using characteristic scales of L for length, 8πµL3/kBT for time, and L γ̇ for background
velocities, yielding

kB T
8πµL3

∂-

∂t
+ γ̇∇x · (ẋ-) + γ̇

∂ (θ̇-)
∂θ

−kB T ln(1/ε)
4πµL3

(I+p̂p̂) : ∇x∇x-−3kB T ln(1/ε)
πµ3

∂2-

∂θ2
= 0.

(A6)
The coefficients are collected in the form of the Péclet number as defined in Eq. (14), and using
Eqs. (A2) and (A5) for the flux velocities, we arrive at the final form given in Eq. (13).
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