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Catalytic nanomotors are nano-to-microsized actuators con-
verting chemical energy into kinetic energy through a

catalyzed reaction using an on-board catalyst. Nature1 provides
researchers with models by which to design inorganic artificial
nanomotors, and several avenues have been traversed to mimic
naturally occurring biomotors.2�7 A wide range of data coupled
with theory are found in the literature focusing upon the design,8�17

motion analysis,18�23 assembly,3,8,9,24�26 physical and chemical
mechanisms,4,10,11,16,18,21,27,28 and the control or modulation of
motion of micrometer and nanometer scale motors. The latter is
becoming the focus with the use of manipulation by fields15,29�31

(including light24), thermal modulation,32 varying catalytic alloys,22

and geometric design.10,13�17,19 Many systems studied to date have
not focused upon the geometry of nanomotors or how altering the
shapes and dimensions influencemovement. Exceptions include the
gear-shaped spinning structure,10 L-shaped and spiral catalytic
nanomotors,14 and magnetic propellers.15 The shape of micro-
swimmers does however greatly affect the types of swimming
behaviors observed. This fact is especially important for autono-
mous machines since no external manipulation is present, and
control is difficult to achieve.

Much of the catalytic nanomotor research to date implements
template-directed electroplating (TDEP) for fabrication; exam-
ples include striped Au/Pt nanowires4,10,11,13,18�20,27,29 and,
combining with lithography, Au/Pt gears.10 Since the structural
morphology is dependent upon the template shape with TDEP,
the method is not the most effective for controlling the geometry
since it is limited to the shape of the template; a common
example is the use of anodized alumina membranes, which
produce cylindrical nanowires. Bimetallic nanowire nanomotors
move translationally in the direction of the catalyst, an effect of
self-electrophoresis,27 unless controlled by external fields,29 or

rotational motion can be observed when one end is tethered to
the surface.4 Besides TDEP, other fabrication techniques include
heterosectioned nanomotors fabricated by tethering the catalyst
to the particle12 and the evaporation of a catalyst onto the particle
using physical vapor deposition (PVD).16,21,23

A PVD fabrication method known as dynamic shadowing
growth (DSG) is more versatile for systematically designing
catalytic nanomotors. DSG is a PVD coating method that
combines substrate manipulation with the shadowing effect
allowing for the fabrication of an array of nanostructures; the
programming of the substrate movement determines the type of
nanostructure that results from the deposition. DSG allows for a
wider range of shapes than TDEP due to this programmability.
Some examples developed in our lab include L-shaped and spiral
nanomotors14 as well as multicomponent rotary structures.17

The Pt catalyst is easily deposited in a manner that best suits the
type of motion desired. Also, catalytic nanomotors are easily and
cheaply fabricated with this method, and a large yield of uniform
structures may be obtained.14,17 DSG is effective for controlling
particle geometry; therefore, it is an appropriate method to
perform a detailed study on the effects of geometry on the swim-
ming characteristics. Here we devote our study to fine-tuning
geometries of similarly shaped structures to gain a broader
understanding of the importance of morphology in nanomotor
engineering. By utilizing DSG to break the symmetry of a
spherical microbead by adding an oxide nanoarm of different
lengths and orientations, the relationship between the motion
behaviors observed and the length and orientation of the arm can
be studied. The trajectories also change as a function of the speed
of the structures when varying the concentration of the
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ABSTRACT: Catalytic nanomotors with silica microbead
heads and TiO2 arms are systematically designed by dynamic
shadowing growth. The swimming trajectories are fine tuned by
altering the arm length and orientation exploiting geometry-
dependent hydrodynamic interactions at low Reynolds number.
The curvature, angular frequency, and radius of curvature of the
trajectories change as a function of arm length. Simulations
based on themethod of regularized Stokeslets are also described
and correctly capture the trends observed in the experiments.
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propelling fuel H2O2. Numerical calculations based on a detailed
solution of the equations of low-Reynolds-number flow are also
performed, and the numerical and experimental results agree.

An asymmetrical nanomotor consisting of a spherical mi-
crobead with an arm extending to different lengths and angles
was fabricated to alter the swimming behavior as shown in
Figure 1a. A self-assembled monolayer of silica microbeads of
2.01 μm in diameter (Bangs Laboratories) is dispersed on a clean
2 cm� 2 cm Si substrate by diluting the microbeads in methanol
(1:5 ratio) and dropping 3 μL by pipet onto the Si wafer surface.
A cross-section depiction of the fabrication process is shown in
Figure 1b. A 40� optical micrograph of the resultant monolayer
is shown in Figure 1c; many of the microbeads are arranged in a
close-packed monolayer. A 10 nm thin film of Ti is first
evaporated onto the beads by electron beam evaporation as an
adhesion layer followed by a 50 nm Pt deposition. For these two
thin-film depositions, the vapor incidence direction is parallel to
the substrate surface normal. The substrate is then tilted to an
angle of 86� with respect to the vapor incidence direction, and a
thick layer of TiO2 is evaporated onto the monolayer to grow the
arm. This large-angle deposition method is known as oblique
angle deposition (OAD), which is a subclass of DSG. An example
of the result may be seen in a top-view SEMmicrograph shown in
Figure 1d. During the deposition, the thickness of the deposited
films is monitored in situ by a quartz crystal microbalance
(QCM) that directly faces the vapor. The TiO2 was evaporated
to 5 different QCM-reading lengths: 1.25 μm, 2.5 μm, 3.75 μm,
5 μm, and 6.25 μm. Another structure was fabricated using glanc-
ing angle deposition (GLAD), which combines OAD and sub-
strate rotation. GLAD is accomplished by rotating the substrate
azimuthally at a constant speed during OAD deposition of the
TiO2. Because the substrate rotates continually, the microbeads
receive vapor from all azimuthal directions often resulting in an
arm that is perpendicular to the substrate surface. For the GLAD

TiO2 structure, the QCM reading reached 7 μm while the
substrate rotation speed remained at ∼22.5�/sec.

SEM images were taken of each sample in order to analyze the
morphology of the structures, and these images were obtained by
dropping nanomotor suspensions onto clean Si wafers and
allowing the droplets to dry. As the droplets dry, the orientation
of the nanomotors as they adhere to the wafers is random; this
allows us to closely observe the structures’morphologies by look-
ing at a large number of structures oriented in different direc-
tions. Figure 1a shows the nanomotor structure that is comprised
of a spherical microbead half-coated with Pt and a TiO2 arm
extending from the top of the Pt section. Since the Pt is evapora-
ted at 0�, the microbead has two hemispheres: one silica and one
Pt. As a result of the deposition process in which the TiO2 is

Figure 1. (a) Schematic of the Pt-coated microbead with a TiO2 arm;
(b) schematic of monolayer of silica microbeads, Ti and Pt, are
evaporated onto the monolayer, and schematic of the deposition of
the TiO2 arms at a large angle; (c) optical micrograph of the monolayer
under 40� magnification; (d) SEM top-view of the monolayer with
TiO2 arms.

Figure 2. SEM of the structures removed from the substrate with arms
of various lengths l = (a) 0 μm; (b) 0.86 μm; (c) 1.7 μm; (d) 2.5 μm;
(e) 3.0 μm; (f) 3.5 μm; and (g) oxide arm length versus QCM reading.
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deposited at a large angle described in the fabrication section, the
arm is tilted at an angle with respect to the line defining the
separation of the two hemispheres between the Pt coating and
the bare silica as seen in Figure 1a. The original monolayer onto
which we evaporate Pt and TiO2 is not a complete monolayer;
there are domains on the substrate that do not have any micro-
beads present as can be seen in Figure 1c. Since the monolayer is
not complete, not all of the structures are the same after the
deposition. Because of the shadowing effect, the microbeads that
are completely surrounded in the closely packed crystal have a
different morphology than the microbeads on the edge of the
domain. The former make up the vast majority of the structures,
and the structures that result from shadowing on the edge of the
domain are relatively rare so we do not consider these for the
analysis. For the nanomotors resulting from within the domain,
the arms grow from the top of microbeads only due to the
shadowing of the adjacent microbeads forming fan bladelike
arms. The SEM image in Figure 1d shows the final structure still
in a closely packed monolayer.

Figure 2 shows representative SEM images of individual nano-
motors of various arm lengths. Figure 2a shows a Pt-coated sphere
with no TiO2; Figure 2b has a short TiO2 arm, and in this image,
the arm is facing downward toward the Si wafer; Figure 2c�e
shows side-views of the nanomotors and the TiO2 arms are flat;
Figure 2f shows the longest structure that is oriented in such a
manner as to show the side and top of the structure simulta-
neously. The structures shown in Figure 2 are examples of each
nanomotor studiedwithQCMthickness reading t= 1.25, 2.5, 3.75,
5, and 6.25 μm shown in Figures 2a�f, respectively. For OAD, the
actual length of the oxide arm does not correspond to the QCM
reading since the substrate has an angle of 86� with respect to the
vapor incidence direction while the QCM itself is faced directly
toward the vapor; because of the large angle, a smaller amount of
material accumulates on the substrate than on the QCM. The
graph in Figure 2g shows actualmeasured arm lengths, l, defined in
Figure 4a versus the QCM reading thickness, t. The actual length l
is significantly shorter than the QCM reading, t; the actual lengths
measured using SEMare as follows: t= 1.25μm, l= 0.86( 0.06μm;

t = 2.5 μm, l = 1.7 ( 0.1 μm; t = 3.75 μm, l = 2.5 ( 0.1 μm; t =
5 μm, l = 3.0( 0.2 μm; and t = 6.25 μm, l = 3.47( 0.08 μm. As
the oxide layer accumulates, the width of the TiO2 arm tends to
increase as the length of the arm increases as shown in Figure 3a.
The width of the arm is slightly smaller than the diameter of the
microbead at the base of the arm, and the arm tends to “fan out”
at the ends. As an example, in Figure 3a the width of the arm
increases from d = 1.6�1.8 μm. Figure 3b illustrates the fanning
phenomenon and defines the value of the width of the arm, d.
The fan shape can also be seen in Figure 2b,e as well. Side-view
images show that the arms are rather thin as can be seen in
Figure 2c,d, so the structures do quite resemble fan blades.

Nanomotor dimensions fall in the range of a few hundred
nanometers to several micrometers, placing them in the low-
Reynolds-number flow regime in which nanomotor motion is
dominated by viscous drag forces. The dimensionless Reynolds
number, or ratio between inertial forces and viscous forces, is
defined as Re = FvL/μ, where F is the fluid density, μ is the fluid
dynamic viscosity, v is a characteristic velocity (for instance the
translational velocity of the nanomotor), and L is the character-
istic dimension of the particle.33,34 For example, a nanomotor of
dimension L = 5 μmmoving at v = 10 μms�1 in water, Re = 5�
10�5 , 1. When Re , 1, inertial terms in the Navier�Stokes
equations may be ignored, reducing them to the linearized time-
independent Stokes equations rp = μr2v, r 3 v = 0 where p is
the pressure, and v is the fluid velocity. For a catalytic nanomotor,
viscous drag dominates, which implies that the nanomotor
motion is governed by its shape. As an example, the famous
Stokes’ drag law for a spherical particle translating at low
Reynolds number is given by Fs

D = �6πμav, where a is the
radius of the sphere; the sphere is symmetrical and isotropic, so
no torque is induced. For a catalytically driven spherical nano-
motor, if sufficient fuel exists in the solution, the catalyzed
reaction propels the particle, which, in the absence of inertia,
quickly reaches a steady-state motion, in which the driving force,
F, and the drag force, Fs

D, are equal in magnitude but antiparallel.
F, the resultant force from the catalytic reaction, depends upon
the reaction rate and the surface area of the catalyst. Because of
symmetry, a swimming nano- or microsphere of electrically
insulating material moves translationally in the direction away
from the catalyst site.21 If the symmetry of the sphere is broken by
adding the oxide arm as shown in Figure 1a, the hydrodynamic
drag will now cause the particle to rotate in addition to moving
translationally. The drag force on the arm, Fa

D, is off-centered
from the driving force, leading to a net hydrodynamic torque on
the structure, which couples translational and rotational motions.

To fully capture the motion of the nanomotors and elucidate
the coupling between translation and rotation, the equations of
microhydrodynamics have to be considered.34 In linear Stokes
flow, the hydrodynamic force and torque on a rigid particle
depend linearly on the particle motion via the following resis-
tance formulation33

F
T

" #
¼ A BT

B C

" #
v
ω

" #
ð1Þ

where F is the hydrodynamic force, T is the hydrodynamic
torque, v is the translational velocity, ω is the angular velocity,
and A, B, and C are second-order tensors dependent upon the
geometry.34 The 6� 6matrix appearing on the right-hand side of
eq 1 is known as the resistance matrix. To calculate this matrix, a
solution of the Stokes equations in the geometry of interest is

Figure 3. (a) SEM of an OAD-grown nanomotor with the TiO2 arm
increasing in width, d, as the length, l, increases; (b) side-view schematic
showing the width, d, of the oxide arm.
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required. While such a solution can be obtained analytically for
particles with simple shapes (spheres, spheroids, etc.) in un-
bounded domains, numerical solutions are required for complex
shapes or particles in the vicinity of boundaries, such as the
asymmetric nanomotors considered in this study, which evolve
next to a rigid substrate.

Here, we describe simulations that include an accurate repre-
sentation of the nanomotor geometry, full hydrodynamic inter-
actions between components of the nanomotor and with the
supporting substrate, Brownian motion as a result of thermal
fluctuations, as well as frictional forces with the substrate. A
typical geometry is illustrated in Figure 4 and is composed of a
rigid sphere connected to a section of an ellipsoid to model the
fanlike shape of the arm in the experiments. By removing sections
of different lengths on the free end of the ellipsoid, various arm
lengths can be modeled for direct comparison with the experi-
mental results. Particle dynamics are captured using the method
of regularized Stokeslets,35 which is a variant of the classic
boundary integral method for linearized viscous flow,36 and
allows for the direct numerical calculation of the resistance
matrix of eq 1. Hydrodynamic interactions with the walls are
accounted for using the method of images for regularized
Stokeslets,37,38 which makes use of a regularized version of the
classic Green’s function for Stokes flow in the vicinity of a no-slip
wall.39 The method was tested extensively for simple particle
shapes (spheres, spheroids) and showed very good agreement
with previously published results down to short separation
distances.33 Once the resistance matrix is obtained, its inverse,
known as the mobility matrix, can be calculated and used to
determine particle velocities resulting from a prescribed catalytic
force, from which trajectories are inferred using a time-marching
algorithm. To qualitatively reproduce the trends seen in experi-
ments, we find that including a frictional force and torque with
the substrate (in addition to the driving force due to the catalytic
reaction) is required. Several models for friction were investi-
gated, and best agreement with the experimental data was
obtained using the model of Liu and Bhushan40,41 for velocity-
dependent friction at the micro- and nanoscales, which expresses
the frictional force and torque on the particle in terms of its linear
and angular velocities using an affine relationship. Because the
velocities themselves depend linearly on the catalytic propulsion
force f, the frictional force and torque may be expressed as

F ¼ F0 þ ðF1 � F0Þ f � f0
f1 � f0

ð2Þ

T ¼ T0 þ ðT1 � T0Þ f � f0
f1 � f0

ð3Þ

where f1 = 1.2 pN and f0 = 0.4 pN are estimates for theminimum and
maximum values of the catalytic propulsive force in the experiments,
and the four unknown parameters F0, T0 and F1, T1 correspond to
the maximum and minimum attainable values of the frictional force
and torque, respectively. The values of these four constants were
adjusted tomatch experimental data for the trajectory curvatures, and
in our simulations, the following values are used: F0 = 0.001 pN, F1 =
0.0018 pN, T0 = 0.0000107 fN 3m, T1 = 0.000025 fN 3m. Finally,
Brownian fluctuations are included using the Langevin equation in
which themagnitude of the randomdisplacements is calculated from
the mobility matrix to satisfy the fluctuation�dissipation theorem of
statistical mechanics.42 A more detailed description of the numerical
methods is deferred to a future publication.

After fabrication, each substrate was placed into a small glass vial
with DI water, and the vial was then sonicated for <1 min to
remove the nanomotors from the substrate and to suspend them
in the water. Samples of 2 μL nanomotor suspension were
dropped by pipet onto clean silicon slides for observation. Two
microliter droplets of hydrogen peroxide of various concentrations
were added to the nanomotor suspensions to activate the motion.
The nanomotors were tracked using a charge-coupled device
(Imperx IPX-VGA210) with a temporal resolution of 20 frames
per second coupled with reflected light microscopy (Mitotoya FS-
110) and custom-developed tracking software. Once the droplet is
placed on the silicon wafer, the nanomotors quickly settle to the
surface of the silicon substrate; we observe the swimming at the
substrate surface so that they remain in the focal plane. The video
files were analyzed using the tracking software to determine
various parameters of interest such as speed, curvature, etc.

During observation, the optical microscope is focused on
the observation slide, and since most of the particles settle to
the surface, the particles move on the plane of the surface and the
trajectories were observed in 2D. Because of the geometry of the
structures shown in Figure 1a, the trajectories should be either
linear or curved with perturbations arising from thermal fluctua-
tions. To analyze the effect of changing the geometry of the
particles, the extent to which the trajectories are altered needs to
be determined. A natural value to calculate in order to character-
ize the trajectory of the curves is the curvature k, which gives a
quantitative value for how much the trajectory is changing
direction with time. Our experiments return a list of the x and
y coordinates of the particle, which describes motion over a
certain time interval in accordance to translational and angular
velocities v and ω. The following method is used to determine
the mean radius of curvature of the trajectories: the trajectories
are divided into nearly circular sections that are fit with a circular
path of equation (x� a)2þ (y� b)2 = r2 whose radius r gives an
estimate of the average radius of curvature of the section.

Figure 4. Typical nanomotor geometry used in the simulations corre-
sponding to an arm length of 3.5 μm (axes labels are in micrometers). A
nanomotor is modeled as a sphere connected to a section of an ellipsoid
representing the arm. Sections of different lengths are removed from the
free end of the ellipsoid to match experimental conditions. The figure
also shows the mesh used in the regularized Stokeslet algorithm, which
was obtained by parametrization of the sphere and ellipsoid surfaces.
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Following K�asa,43 this is achieved by minimizing the sum of the
squares of the distances from the discrete points (x1,y1), (x2,y2),
...(xn,yn) on the trajectory section to points on the circle.
Specifically, the following function is minimized over the un-
known parameters a, b, and r

SSKða, b, rÞ ¼ ∑
n

i¼ 1
½r2 � ðxi � aÞ2 � ðyi � bÞ2�2 ð4Þ

K�asa further points out that solutions for a and b can be
obtained by solving linear equations, and the radius of curvature
is then obtained as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n ∑

n

i¼ 1
½ðxi � aÞ2 þ ðyi � bÞ2�

s
ð5Þ

and averaged over all the trajectory sections. Finally, the mean
trajectory curvature k is determined as the inverse of the
averaged radius of curvature obtained above.

The OAD-grown structures swim according to the transla-
tional and angular velocities resulting from the catalytic propul-
sion force via the mobility matrix (inverse of the resistancematrix
of eq 1), which is a function of the nanomotor geometry and
specifically of its arm length. Each nanomotor shown in Figure 2
exhibits a similar yet different swimming pattern when placed in
the same concentration of H2O2 (10%) due to the various drag
forces and torques applied to the arm corresponding to each
length. Figure 5a,b shows two-dimensional (2D) plots showing
representative experimental and numerical trajectories for nano-
motors with various arm lengths, respectively. The samples
shown are typical for each arm length. To clearly compare the
different trajectories, each was adjusted to have amutual center at

Figure 5. (a) The plot shows the trajectories of nanomotors with four
different arm lengths l = 0.86 μm, 1.7 μm, 2.5 μm, and 3.0 μm. As the
arm length increases, the radius of curvature decreases until some
unknown minimum is reached. Each plot is a 10 s interval, and the
centers of each trajectory have been deliberately moved to a mutual
middle. (b) Simulated nanomotor trajectories for the same arm lengths
as in (a) showing similar trends as the experimental data. Axes labels are
in micrometers. Also see accompanying online movie in Supporting
Information.

Figure 6. (a) Experimental (black 0) versus numerical values (red 4)
for curvature k versus TiO2 arm length. For k, both the numerical values
and the experimental values follow the same trend of a roughly linear
increase with the exception of the l = 3.5 μm arm length; (b)
experimental (black 0) versus numerical values (red 4) for angular
frequency ω versus TiO2 arm length. The simulation results show a
similar relationship with experimental ω and appear to be reaching a
limiting value as the arm length increases. The outlier as in Figure 5a
appears to be l = 3.5 μm.
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the origin of the graph (0 μm, 0 μm). All trajectories show
roughly circular motion. The structure with the shortest arm (l =
0.86 μm, Figure 2b) moves with a relatively large radius in
comparison to the other lengths; as the length of the arm
increases, the radii of curvature become smaller. The nanomotors
swim in a roughly circular pattern when the oxide arm is present.
For each rotation with radius of curvature r, the structure spins
once as it moves about the circular trajectory so that the angular
velocity ω of the nanomotor also corresponds to the angular
frequency of the circular motion. Figure 6a,b compares the
experimental values (black 0) against the numerical values
(red Δ) for arm length versus curvature k and arm length versus
angular frequency ω respectively, showing similar trends.
Figure 7 compares experimental values (black0) against numer-
ical values (red Δ) for the effect of nanomotor speed on
curvature k in the l = 3.5 μm case. The speed is altered by
changing the concentration of H2O2. Discussion of the compar-
ison of experiment and simulation is presented below.

Figure 5a shows experimental results for swimming trajec-
tories corresponding to four different arm lengths (excluding l =
0 μm and l = 3.5 μm for clarity). The graph in Figure 5b shows
the corresponding simulation results (also see accompanying
online movies in Supporting Information). It should be noted for
the experiments that roughly constant velocity is observed for
each arm length, and that each system is observed at steady state
at which the applied force and torque are exactly countered by
the forces and torques resulting from hydrodynamic drag and
frictional forces with the substrate. In the absence of any
Brownian fluctuations, the simulated trajectories are found to
be closed circles with constant curvature, whose radius decreases
with increasing arm length. With Brownian motion, the trajec-
tories deviate from perfect circles but instead take the form of
irregular orbits that are qualitatively similar to those observed in
the experiments. The increase in the mean trajectory curvature
with arm length is also consistent with the experimental observa-
tions. This is shown more quantitatively in Figure 6, where
experimental values (black 0) are compared with values from

simulations (redΔ) for k (Figure 6a) andω (Figure 6b). For the
experimental results in Figure 6a, as the arm length increases, k
slightly increases in a roughly linear fashion except for the l =
3.5 μmcase, which does not follow this trend; the simulation data
also follow a roughly linear increase with respect to l. In
Figure 6b, ω follows a similar increase as k with the l = 3.5 μm
case once again not following the same trend as the rest of the
data points; the simulation data first increase linearly, but then
begin to level as l increases. The large error bar for both the
curvature k and angular frequency ω may account for the
outliers. It is expected that k and ω will both reach a limiting
value since increasing the arm length will eventually decrease the
two values along with the velocity, that is, at a certain length, the
driving force will only rotate the structure and no translational
motion will be present (no circular trajectory, only rotation): as
lf¥, vf 0. The two graphs show similar trends and values, but
the simulations seem to suggest thatω and kwill reach a limiting
value for l > 3.5 μm, while this is unclear in the experimental data.
Similar trends are observed for the curvature versus speed for
experimental (black 0) versus simulation (red Δ) results as
shown in Figure 7, where we find that good agreement is
obtained at lower speeds, while the behavior at high speeds is
not captured as accurately by the simulations. The experimental
data points follow a linear increase, while the numerical values
appear to be reaching a limiting value as the speed increases.

As a control experiment, we alter the position of the oxide arm
on the microbead and observe the swimming trajectories. We
have shown in a previous study with Pt-coated microbeads that
increasing the concentration of H2O2 increases the speed of the
microbeads and that their trajectories are linear due to
symmetry.21 For the GLAD structures described in the fabrica-
tion section, a schematic and an SEM are shown in Figure 8a,b
respectively. When the speed is modulated with the addition of
various concentrations of H2O2, increasing the speed should
have little effect on the trajectories of the GLAD-grown struc-
tures since symmetry is still present; this is in opposition to the
OAD-grown structures’ trajectories, which have greater average
curvature with increasing speed. The OAD-grown structures are
expected to have greater torque since the drag increases con-
currently with velocity. We subject the OAD-grown and
the GLAD-grown structures to the same concentrations of
H2O2 to see whether curvature is altered for the two. OAD-
grown speed plots are shown in Figure 7; as we increase the speed
of the OAD nanomotor, the curvature increases monotonically,
which is expected while Figure 9 shows that the curvature
remains roughly constant as the speed is increased in the case
of a symmetric structure. The best-fit line for Figure 7a gives a
slope of 6.4 � 10�2 s/μm2 while the slope for the GLAD

Figure 7. Experimental (black 0) versus numerical (red 4) data for
speed versus curvature k. For the experiment, there exists a roughly
linear increase of curvature with respect to speed (the speed is increased
by increasing the concentration of H2O2). For the simulation results, a
similar trend is seen for low speeds, but the curve flattens at higher
speeds as opposed to staying linear.

Figure 8. (a) Schematic of a GLAD-grown structure; (b) SEM.



2549 dx.doi.org/10.1021/nl201273n |Nano Lett. 2011, 11, 2543–2550

Nano Letters LETTER

structure motion in Figure 9 is 1.5 � 10�2 s/μm2. The speed
should have no effect on the GLAD structure as the arm is
symmetric and should not result in a hydrodynamic torque, and
Figure 9 suggests this is indeed occurring. Intuitively, a swimmer
that is symmetric and is being propelled along its axis of
symmetry should not feel any torque; the GLAD structure swims
in an approximate straight line as expected (with fluctuations
resulting from Brownian motion). This result strengthens the
idea that the geometry of catalytic nanomotors has a major
impact on swimming behavior and that modulation of behavior is
possible through systematic design.

Using a dynamic fabrication method based on OAD
and GLAD, we have studied the effects of geometry on the
dynamics of catalytic nanomotors moving at low Reynolds
number. The trajectories of the particles are highly dependent
upon the geometry, and OAD/GLAD allows easy modulation of
nanomotor morphology. The special case on which we focus is a
nanomotor consisting of a spherical microbead head and an oxide
arm that is off-centered to the driving force arising from the
chemical reaction. We altered the length and angle of the oxide
arm and compared the experimental results to a computational
model based on a solution of the Stokes equations using the
method of regularized Stokeslets. The two sets of results were
found to be very similar with small discrepancies that may be
attributed to the idealized configuration adopted in the simula-
tions in which the nanomotor arm was assumed to remain
parallel to the supporting substrate. As the field of catalytic
nanomotors matures, our study demonstrates that scientists and
engineers should consider the influence of nanomotor shape and
geometry upon swimming behavior in order to design better
structures in the future.
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