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Self-organized dynamics of a viscous drop with interfacial nematic activity
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We study emergent dynamics in a viscous drop subject to interfacial nematic activity. Using hydrodynamic
simulations, we show how the interplay of nematodynamics, activity-driven flows in the fluid bulk, and surface
deformations gives rise to a sequence of self-organized behaviors of increasing complexity, from periodic
braiding motions of topological defects to chaotic defect dynamics and active turbulence, along with spontaneous
shape changes and translation. Our findings recapitulate qualitative features of experiments and shed light on the
mechanisms underpinning morphological dynamics in active interfaces.
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Living materials are characterized by their ability to con-
tinuously transform chemical energy into mechanical work at
the microscale. When confined to deformable surfaces, these
active materials demonstrate a myriad of dynamical behav-
iors. Biological surfaces also often exhibit intrinsic degrees of
freedom that correspond to in-plane order (such as nematic or
polar), which facilitate long-range hydrodynamic interactions,
resulting in the emergence of self-organized spatiotemporal
patterns. This is a fundamental feature of various biological
systems, including the cell cortex and confluent eukaryotic
cells, and plays a crucial role in their functional properties.
Here, we focus on systems with nematic symmetry. Experi-
mental observations indicate the emergence of nematic order
during cytokinesis [1,2]. Nematic alignment has also been
evidenced in different stages of tissue morphogenesis when
individual cells exhibit a preferred elongation axis [3–5].

Biological processes from subcellular to multicellular
scales often occur on self-deforming surfaces with various
mechanical properties. Examples include shape changes dur-
ing polarization, migration, and division in cells, and apical
constrictions in epithelial morphogenesis [6,7]. Understand-
ing these morphological dynamics necessitates theoretical
models that account for the three-way coupling between sur-
face deformations, in-plane order, and flow [8–10]. Recent
studies have probed the mechanisms driving shape changes
in cells and epithelial tissues, advancing our understanding of
these processes [11–13].

The central motif of these biological systems has also been
utilized to create synthetic soft active materials [14–17]. In
pioneering work, Keber et al. [14] assembled a shape-shifting
lipid vesicle by encapsulating a film of microtubules and
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kinesin motors to its inner surface, a system that directly
motivates the present work. Understanding the interplay be-
tween orientational order, activity-induced flow, and substrate
geometry has been the subject of several studies thereafter.
Various models have probed the role of surface curvature
on the dynamics of topological defects in active fluids con-
fined to rigid surfaces of various topologies [17–26]. More
recently, axisymmetric and 3D numerical simulations have
been used to investigate the mechanisms responsible for
fundamental shape changes observed in cells and epithelial
tissues [11–13], yet the role of interfacial deformations and
their coupling to bulk flow remains poorly understood. Previ-
ous simulations of active deforming surfaces have primarily
relied on diffuse-interface methods [11,12]. These methods
blur material interfaces through numerical diffusion, leading
to inaccuracies in resolving interfacial dynamics and intro-
ducing numerical artifacts [27,28]. This limitation motivates
the development of sharp-interface methods that accurately
solve the governing equations at the material interfaces while
self-consistently accounting for their coupling to bulk fluid
flows.

In this Letter, we report on the spontaneous dynamics of
a viscous drop driven out of equilibrium due to interfacial
nematic activity. We show that the interplay between the flow
inside and outside the drop, surface transport of the nematic
field, and surface deformations gives rise to a sequence of self-
organized behaviors and symmetry-breaking phenomena of
increasing complexity. Our results recapitulate the qualitative
features of experiments [14], in both the small and finite de-
formation regimes. Under small deformations, the dynamics
is characterized by the braiding motion of topological defects
around the drop, giving rise to well-known braiding patterns at
different activity levels. The asymmetry induced under finite
deformations results in translational motion of the drop —a
behavior consistent with experimental observations, yet unad-
dressed in previous hydrodynamic simulations. Under strong
activity, a transition to active turbulence is also observed.

We model a viscous drop occupying volume V − and sus-
pended in another viscous fluid V + [Fig. 1(a)]. The interface
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FIG. 1. (a) Schematic of the model system. (b) Snapshots of the director field and scalar order parameter shown as a color map during
(left) braiding motion under small deformations, (middle) braiding motion with shape-shifting behavior, and (right) chaotic regime with finite
deformations. Also see Videos 1–3 of the SM [29]. (c) Tetrahedral and planar defect arrangements. (d), (e) Evolution of the average angle α for
two systems with Pe = 0.3 (d) and Pe = 3 (e). The red and blue lines denote planar (120◦) and tetrahedral (109.5◦) configurations, respectively.
(Ca, �c ) = (0.01, 0.16) in (d) and (e).

∂V is defined by a smooth surface r = r(s1, s2) ∈ R3

parametrized by coordinates (s1, s2). Tangent vectors
gi = ∂ir (∂i := ∂/∂si, i = 1, 2), along with the normal
v = (g1 × g2)/|g1 × g2|, form a local coordinate system
with surface metric tensor gi j = gi · g j . The drop is initially
spherical with radius R. A monolayer of active nematic
particles is constrained to ∂V and drives the system out of
equilibrium by inducing flows inside and outside the drop and
by causing deformations.

We use a coarse-grained representation of the nematic in
terms of the tensor Q = Qi j gig j where Qi j = S(nin j − gi j/2).
Here, n = nigi (nini = 1) denotes the local nematic director,
and S ∈ [0, 1] is the scalar order parameter characterizing the
alignment strength. Q evolves by the nematodynamic equa-
tion [9,25,30]

Dt Q
i j = 1

�
Hi j + ζŨ i j, x ∈ ∂V. (1)

Dt Qi j is a corotational material derivative embodying advec-
tion and rotation of the nematic by the surface flow with
velocity u = uigi + unv,

Dt Q
i j = ∂t Q

i j + uk ∇kQi j + un
(
C j

k Qik + Ci
kQk j

)
+ ωn

(
εikQ j

k + ε jkQi
k

)
, (2)

where ∇k is the covariant derivative with respect to sk , Ci j =
−∂ j∂ix · v is the curvature tensor, ωn = 1

2εi j∇iu j is the normal
vorticity, and εi j = v · (gi × g j ) is the Levi-Civita tensor. The
molecular tensor Hi j = −δF/δQi j describes orientational re-
laxation in the nematic monolayer, with � the rotational
viscosity. It derives from the Landau–de Gennes free energy,

F =
∫

∂V
dA

(
ks

2
[d Qi jQ

i j + c(Qi jQ
i j )2] + ke

2
∇iQ jk∇iQ jk

)
,

(3)

capturing short-range and elastic interactions in the nematic
monolayer [31,32]. Here, ks and ke are steric and elastic
phenomenological constants, and d = a + b

3 S + c
6 S2 where

a, b, and c are normalized thermotropic parameters. We ne-
glect any coupling between the extrinsic curvature and Q in
Eq. (3). Finally, alignment by the flow is captured by ζŨ i j

in Eq. (1), where ζ is the flow alignment parameter [33],
and Ũ i j = U i j − 1

2U k
k gi j is the traceless part of the strain-rate

tensor U i j = 1
2 (∇iu j + ∇ jui ) + Ci jun.

Neglecting inertial effects and gravity, the flow inside
and outside the drop is governed by the Stokes equations:
μ±∇2u± − ∇p± = 0 and ∇ · u± = 0 for x ∈ V ±. The ve-
locity is continuous across ∂V and vanishes far away. The
nematic particles exert an active surface stress τa = ξ Q on
their surrounding, leading to fluid motion and deformations.
The constant ξ captures biochemical activity, with ξ < 0 for
extensile systems as in the experiments of Keber et al. [14].
The interfacial force balance along the tangential and normal
directions reads

f h, j + ξ ∇iQi j = 0

f h
n − γ Ck

k − ξ Ci j Qi j = 0

}
x ∈ ∂V, (4)

where γ is the uniform surface tension. The jump in hydro-
dynamic tractions across ∂V is f h = v · [T h]+−, where T h =
−pI + μ(∇u + ∇uT) is the Newtonian stress tensor. We
solve Eqs. (1)–(4) numerically using a custom spectral bound-
ary integral solver [34,35], where all physical variables such
as shape, velocity, and Q tensor are represented as truncated
series of spherical surface harmonics. This sharp-interface
method rigorously captures the coupling between bulk fluid
flow and interfacial dynamics, providing robust and accurate
solutions across a broad range of control parameters (see
Supplemental Material (SM) [29] for a detailed summary of
the numerical algorithm).

Dimensional analysis yields four dimensionless param-
eters in addition to ζ . The active capillary number Ca =
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FIG. 2. (a) Spatiotemporal trajectories (X,Y, t ) of projected defects for a drop with (Pe, �c ) = (0.3, 0.16) during golden braiding regime
(see SM for details [29]). (b) Diagrams of golden (triangle) and silver (square) braids. (c) Defect trajectories in 3D for active drops with
�c = 0.16 in the golden (left), silver (middle), and mix (right) braiding regimes at different values of Pe. The time interval between the first and
last data points is �t = 50/ f1, where f1 is the peak frequency in the FFT spectrum of α. (d) FTBE of defect trajectories, and (e) average active
power P̄a for a spherical drop, as functions of Pe and �c, during different braiding regimes. In all simulations, FTBE converges to a constant
value at long times with a relative tolerance of δFTBE/FTBE < 0.05 (see Fig. S4). Error bars in (e) represent the standard deviation around
the mean. Ca = 0.01 in all cases.

|ξ |/γ compares active stresses to surface tension and gov-
erns the magnitude of deviations from sphericity [Fig. 1(b)].
The active Péclet number Pe = |ξ | �/(ksμ

+R) characterizes
the strength of convective vs relaxational fluxes in Eq. (1).
The balance between short-range and elastic interactions in
the nematic monolayer defines a dimensionless coherence
length �c = R−1√ke/ks, or effective distance over which topo-
logical defects affect the nematic field on the scale of the drop.
Finally, the viscosity ratio between inner and outer fluids is
λ = μ−/μ+. We found that varying λ has little effect on the
dynamics, and all results shown here are for λ = 1.

First, we focus on the regime of Ca � 1 to isolate the effect
of deformations. In this regime, the behavior of the system is
governed by two parameters: the activity level captured by Pe,
and nematic elasticity captured by �c. Active stresses drive the
system out of equilibrium while nematic elasticity tends to
stabilizes it. Indeed, as nematic elasticity becomes stronger,
the coherence length increases (�2

c ∝ ke), resulting in a more
constrained arrangement of the topological defects that repel
one another. Given the spherical topology of the interface, the
net topological charge of the nematic field is fixed at +2, and
for small to moderate activity levels (0 < Pe � 5), the system
exhibits four +1/2 defects [Fig. 1(b), left].

Under weak activity, the defects remain stationary and
occupy the vertices of a regular tetrahedron (Fig. S2 [29]).
Beyond a critical value Pec, a transition occurs to an unsteady
regime marked by the periodic motion of the defects (see
Video 1 [29]). Each defect is set into motion by the activity-
induced flow, which influences the nematic field. In agreement

with experiments [14], the defect arrangement oscillates be-
tween tetrahedral and planar configurations, as illustrated in
Figs. 1(c)–1(e), where α = 1/6

∑4
i< j αi j denotes the average

of all pairwise angles αi j between the four defects.
The spatiotemporal defect trajectories can be analyzed and

interpreted using the concept of braids [36]. We first map
the defect trajectories from ∂V to the drop’s midplane us-
ing the stereographic projection, where one reference defect
is taken to be at the sphere pole and therefore mapped to
infinity [37,38]. When projected along a specific direction,
the remaining three defect trajectories display a sequence of
crossings that defines a braid b [Fig. 2(a)]. Each crossing
event is expressed in terms of elementary generators σi, i ∈
{1, . . . , n − 1}, of the n-particle braid group with n = 3 [36].
The generator σi denotes the clockwise exchange of defect
i with defect i + 1 on the projection line, while σ−1

i cor-
responds to their counterclockwise exchange. The braid’s
complexity and mixing efficiency can be quantified by the
exponential stretching rate of material curves in the associated
flow, determined through its topological entropy and finite-
time braiding exponent (FTBE) for periodic and aperiodic
trajectories, respectively [39–41] (see SM for details [29]).

For activity levels close to Pec within the unsteady regime,
the defect motion is periodic and characterized by a single
timescale, as evidenced by the presence of a single peak
in the fast Fourier transform (FFT) of the average angle α

(Fig. S5 [29]). The defect trajectories follow a specific pattern
known as the golden braid [Figs. 2(a), 2(b)], described by the
braid B1 = (b1)k , where b1 = σ1 σ−1

2 σ1 σ1 σ2 σ−1
1 σ−1

2 σ−1
2 .
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Its topological entropy is given by h(b1) = 6 ln φ1, where
φ1 = (1 + √

5)/2 denotes the golden ratio [42]. As Pe is
further increased, nonlinear effects become more pronounced,
leading to the emergence of a second timescale. This is man-
ifested in the FFT spectrum of α, which exhibits two distinct
peaks (Fig. S6 [29]). Eventually, the braiding pattern under-
goes a transition from the golden braid to the silver braid
B2 = (b2)k , where b2 = σ1 σ2 σ−1

1 σ−1
2 σ1 σ−1

2 . Its topological
entropy is h(b2) = 2 ln φ2, where φ2 = 1 + √

2 is the silver ra-
tio. The silver braiding pattern is particularly significant, as it
has been shown to maximize topological entropy per time step
in systems with defects arranged linearly [43]. Schematic di-
agrams of the golden and silver braids are shown in Fig. 2(b).
The efficiency of a periodic braid in increasing entropy can
be quantified by its topological entropy by generator (TEPG)
[43]. Comparing the TEPG of the golden and silver braids
shows that TEPG(b1) ≈ 1.23 TEPG(b2); i.e., the transition
to the silver braid with increasing Pe causes a decrease in
TEPG.

As the activity level is further increased, a transition from
periodic to aperiodic dynamics is observed. This regime, re-
ferred to as mix braiding, is characterized by the absence of
a specific braiding pattern, with defect trajectories displaying
irregular and chaotic behavior. The transitions from the golden
to silver braiding regime and subsequently to the chaotic
mix braiding regime with increasing activity had not been
observed in previous hydrodynamic simulations of similar
systems [44,45]. The FFT spectrum of α in this regime is
broad and displays multiple peaks, a signature of highly non-
linear dynamics (Fig. S7 [29]). Figure 2(c) shows 3D defect
trajectories in drops with golden, silver, and mix braiding
patterns, providing visual evidence of the increasing complex-
ity with higher activity. To characterize the different braiding
patterns and quantify their complexities in the nonperiodic
case, we calculate the FTBE of defect trajectories as a function
of Pe and �c in Fig. 2(d) [41,46]. The FTBE generally shows
an increasing trend with respect to Pe, indicating that higher
activity levels lead to more complex dynamics. However, the
transition from golden to silver braiding is accompanied by
a decrease in FTBE, consistent with the decrease in TEPG
discussed above. This reduction in the FTBE is particularly
intriguing as it occurs despite the heightened activity.

To elucidate this effect, we analyze the drop’s energet-
ics in the unsteady regime. The active power expended by
the surface nematic is defined as Pa(t ) = ∫

∂V
f a · u ds, where

f a = ξ∇iQi jg j − ξCi j Qi jv is the interfacial active traction
and u the interfacial velocity. As shown in Fig. 2(e), the
time-averaged active power, denoted by P̄a = 〈Pa〉t , is an as-
cending function of activity except during the transition from
the golden to silver braid, where it suddenly drops. This
indicates that the increase in TEPG with Pe in the golden
braiding regime comes at a higher energetic cost, and that the
spontaneous transition to the silver braid is thus energetically
favorable. Note that, under small deformations, the active
power is dissipated primarily through viscous effects within
the bulk, with negligible contributions from capillarity (see
SM for details [29]).

We highlight the stabilizing effect of nematic elasticity
as captured by �c. The critical Péclet number Pec for the

transition from equilibrium to periodic braiding rises from
Pec ≈ 0.2 to 1.2 as the coherence length is varied from
�c = 0.16 to 0.32. The onset of aperiodic defect motions
(mix braiding) is also delayed under larger �c. According to
Figs. 2(d) and 2(e), for a given Pe, both the FTBE and the
active power are consistently lower at the larger coherence
length. Indeed, nematic elasticity tends to repel topological
defects, which fosters more organized defect dynamics and
delays the transition to chaos.

Allowing for finite deformations (Ca > 0) further in-
creases the complexity of the dynamics. In this regime, the
active drop undergoes breathing motions as the defects tra-
verse its surface [Fig. 1(b), middle] (see Video 2 [29]). These
deformations, in turn, impact the nematodynamics, establish-
ing a three-way feedback loop between shape, nematic field,
and flow. Notably, we observe an increase in Pec at higher
capillary numbers, indicating that elevated activity levels are
required for defects to overcome the energy barriers induced
by deformations.

For the smaller coherence length �c = 0.16, we observe
that under moderate values of Pe > Pec, four defects exhibit
braiding motion similar to the behavior observed under small
deformations. Concurrently, the drop undergoes spontaneous
shape changes under the influence of active stresses. At long
times, the drop eventually reaches an equilibrium state with
a steady deformed shape and defect configuration. This be-
havior is only observed up to a second critical Péclet number
Peeq > Pec, beyond which the system transitions to a chaotic
regime characterized by the rapid creation and annihilation of
defects around the drop [Fig. 1(b), right] (also see Video 3
and Fig. S12 [29]). The newly formed defects emerge as pairs
with ±1/2 topological charges, maintaining a constant net
topological charge. The dynamics in this regime resembles the
active turbulence previously observed in nematic materials on
flat and curved surfaces [25,47–50]. For the larger coherence
length �c = 0.32, the system reaches equilibrium over long
times for all explored Péclet numbers (0 < Pe < 12) due to
the stabilizing effect of nematic elasticity.

Nonlinearities introduced by finite deformations amplify
the asymmetry in the nematic field and defect configuration,
giving rise to a net translational component in the veloc-
ity field. Initially, the drop switches directions randomly;
after a short transient, it eventually selects a steady di-
rection and displays nearly unidirectional motion at longer
times (see Fig. S10 [29] for representative trajectories). The
volume-averaged velocity of the drop of volume Vd is calcu-
lated as U (t ) = 1

Vd

∫
V − u dϑ , and its time-averaged magnitude,

Ū = |〈U〉t |, is computed after the transient regime to ensure
the direction of motion does not change significantly (see SM
for details [29]). We observe that the translational velocity
is orders of magnitude larger compared to the regime of
Ca � 1, underscoring the role of deformations in breaking the
system’s symmetry. This behavior, unaddressed in previous
hydrodynamic simulations, agrees well with the experimental
observations of Keber et al. [14], where the active vesicles
became motile under larger deformations. Figure 3 shows Ū
vs Pe for Ca = 0.5. For �c = 0.16, Ū first exhibits a sharp
increase with Pe when four defects are present. It then reaches
a plateau as Pe is further increased and the drop enters the
chaotic regime where additional defects are created. Similar
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FIG. 3. Time-averaged translational velocity magnitude as a
function of Pe and �c for Ca = 0.5. Filled markers indicate cases
where more than four defects were observed. Insets show snapshots
of the drop corresponding to the boxed markers. Error bars represent
the standard deviation around the mean.

trends are observed for �c = 0.32, although the increase in
Ū with Pe is delayed as nematic elasticity promotes more
symmetric shapes.

Our results highlight the complex interplay of nemato-
dynamics, active fluid flows, and interfacial mechanics, and
point to a wide range of emergent dynamics depending on
the importance of active stresses relative to viscous and
capillary stresses. Our observations are all consistent with

past experiments on active vesicles [14]. We have developed
a robust sharp-interface numerical framework that accurately
resolves interfacial dynamics in active drops with finite defor-
mations. For studying deformable active surfaces exhibiting
large localized deformations, such as those observed in Hydra
morphogenesis [51,52], adaptive high-order boundary inte-
gral methods present a promising approach [53,54]. We note
that the analysis of braiding motions only provides qualita-
tive information on the system’s mixing efficiency, and is
limited to regimes with four topological defects, where treat-
ing defects as material points is a reasonable approximation.
A more in-depth characterization of the organizing role of
activity-induced flows may rely on an analysis of Lagrangian
coherent structures and associated finite-time Lyapunov ex-
ponents, which have recently been applied to identify flow
attractors and repellers in bulk active nematics [55,56] and
during embryogenesis [57]. Finally, we note that the system
studied here may serve as a simplified model for active living
systems, such as cells or organoids. For that purpose, various
model extensions may be desirable, including accounting for
the role of elastic stresses, of extrinsic curvature coupling, or
of chemical cues, which are instrumental in regulating the cell
cortex [58–60].

The authors thank J.-L. Thiffeault for insightful conversa-
tions on braids and topological entropy, S. H. Bryngelson for
his contributions to the computational framework [35], and
Y. Chen for a critical review of the manuscript. This work was
partially funded by National Science Foundation Grants No.
CBET-1934199 and No. DMS-2153520.
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