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Confined suspensions of active particles show peculiar dynamics characterized by wall
accumulation, as well as upstream swimming, centreline depletion and shear trapping
when a pressure-driven flow is imposed. We use theory and numerical simulations to
investigate the effects of confinement and non-uniform shear on the dynamics of a
dilute suspension of Brownian active swimmers by incorporating a detailed treatment
of boundary conditions within a simple kinetic model where the configuration of the
suspension is described using a conservation equation for the probability distribution
function of particle positions and orientations, and where particle–particle and particle–
wall hydrodynamic interactions are neglected. Based on this model, we first investigate
the effects of confinement in the absence of flow, in which case the dynamics
is governed by a swimming Péclet number, or ratio of the persistence length of
particle trajectories over the channel width, and a second swimmer-specific parameter
whose inverse measures the strength of propulsion. In the limit of weak and strong
propulsion, asymptotic expressions for the full distribution function are derived. For
finite propulsion, analytical expressions for the concentration and polarization profiles
are also obtained using a truncated moment expansion of the distribution function. In
agreement with experimental observations, the existence of a concentration/polarization
boundary layer in wide channels is reported and characterized, suggesting that wall
accumulation in active suspensions is primarily a kinematic effect that does not require
hydrodynamic interactions. Next, we show that application of a pressure-driven
Poiseuille flow leads to net upstream swimming of the particles relative to the
flow, and an analytical expression for the mean upstream velocity is derived in
the weak-flow limit. In stronger imposed flows, we also predict the formation of a
depletion layer near the channel centreline, due to cross-streamline migration of the
swimming particles towards high-shear regions where they become trapped, and an
asymptotic analysis in the strong-flow limit is used to obtain a scale for the depletion
layer thickness and to rationalize the non-monotonic dependence of the intensity of
depletion upon flow rate. Our theoretical predictions are all shown to be in excellent
agreement with finite-volume numerical simulations of the kinetic model, and are also
supported by recent experiments on bacterial suspensions in microfluidic devices.
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1. Introduction
The interaction of active self-propelled particles with rigid boundaries under

confinement plays a central role in many biological processes. Spermatozoa are
well known to accumulate at rigid boundaries (Rothschild 1963; Woolley 2003),
with complex implications for their transport in the female tract during mammalian
reproduction (Suarez & Pacey 2006; Denissenko et al. 2012; Kantsler et al. 2014).
The aggregation of bacteria near surfaces and their interaction with external flows
in confinement has a strong effect on their ability to adhere and form biofilms
(Rusconi et al. 2010; Lecuyer et al. 2011; Kim et al. 2014). It also impacts upon
their interactions with the gastrointestinal wall during digestion, with consequences
for various pathologies (Lu & Walker 2001; Cellia et al. 2009). Confinement has
also been shown to affect cell–cell interactions and collective motion in dense sperm
and bacterial suspensions, and can also result in spontaneous unidirectional flows
(Riedel, Kruse & Howard 2005; Wioland et al. 2013; Lushi, Wioland & Goldstein
2014). In engineering, the ability to concentrate or separate bacteria by controlling
their motions in microfluidic devices with complex geometries has been demonstrated
(Galajda et al. 2007; Hulme et al. 2008; Lambert, Liao & Austin 2010; Kaiser,
Wensink & Löwen 2012; Altshuler et al. 2013), as well as the ability to harness
bacterial swimming power to actuate gears (Di Leonardo et al. 2010; Sokolov et al.
2010) or transport cargo (Koumakis et al. 2013; Kaiser et al. 2014). Particle–wall
interactions are also critical in systems involving synthetic microswimmers (Gibbs
et al. 2011; Takagi et al. 2013, 2014), as these inherently reside near surfaces due
to sedimentation.

The prominent feature of confined active suspensions is the tendency of swimming
particles to accumulate near boundaries. This was first brought to light by Rothschild
(1963), who measured the concentration of swimming bull spermatozoa in a
glass chamber and reported a non-uniform distribution across the channel with
a strong spike in concentration near the walls. Berke et al. (2008) repeated the
same experiment using suspensions of Escherichia coli in microchannels and also
observed an accumulation of bacteria at the channel walls. They further reported
the tendency of bacteria to align parallel to the boundaries, which led them to
consider wall hydrodynamic interactions due to the force dipole exerted on the fluid
by the self-propelled particles as a potential mechanism for migration. Hydrodynamic
interactions are indeed known to have an impact on the trajectories of swimming
particles near no-slip walls (Lauga et al. 2006; Spagnolie & Lauga 2012), and have
been shown to lead to attraction of sperm cells towards walls (Fauci & McDonald
1995). Li & Tang (2009) and Li et al. (2011) also observed wall accumulation
in suspensions of Caulobacter crescentus but presented an alternative mechanism
based purely on kinematics that explains accumulation as a result of the collisions
of the bacteria with the wall, leading to their reorientation parallel to the surface.
The possibility of a non-hydrodynamic mechanism for wall accumulation is indeed
supported by various simulations that neglected wall hydrodynamic interactions
(Costanzo et al. 2012; Elgeti & Gompper 2013), suggesting that such interactions in
fact only play a secondary role in this process.

Several other interesting effects have also been reported when an external flow is
applied on the suspension. One such effect is the propensity of motile particles to
swim upstream in a pressure-driven flow. This was noted for instance by Hill et al.
(2007), who tracked the trajectories of E. coli in a shear flow near a rigid surface in
a microfluidic channel, and proposed a complex mechanism for upstream swimming
based on the chirality of the flagellar bundles and on hydrodynamic interactions.
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Such interactions were characterized more precisely by Kaya & Koser (2009), who
demonstrated that the E. coli cells undergo modified Jeffery’s orbits (Jeffery 1922)
near the walls and suggested that this detail is crucial in understanding the upstream
migration. A clearer picture of this phenomenon emerged in yet more recent work
by Kaya & Koser (2012), who systematically analysed E. coli motility near a surface
as a function of the local shear rate. At low shear rates, circular trajectories were
observed due to the chirality of the cells, as previously explained by Lauga et al.
(2006). At higher shear rates, positive rheotaxis was reported and accompanied by
rapid and continuous upstream motility. This directional swimming was explained as
a result of the combined effects of surface hydrodynamic interactions, which were
thought to cause the swimming cells to dip towards the walls, and of reorientation
by the shear flow, which aligns the cells against the flow. Upstream motility was also
recently discussed by Kantsler et al. (2014) in the case of mammalian spermatozoa,
where the combination of shear alignment, wall steric interactions and cell chirality
was shown to lead to steady spiralling trajectories in cylindrical capillaries.

While most experimental studies under confinement have focused on near-wall
aggregation and swimming dynamics, the behaviour of self-propelled micro-organisms
under flow in the bulk of the channels is also of interest. In recent work, Rusconi,
Guasto & Stocker (2014) analysed the effects of a Poiseuille flow on the trajectories
and distributions of motile Bacillus subtilis cells, with focus on the central portion
of the channel. In sufficiently strong flow, they reported the formation of a depletion
layer in the central low-shear region of the channel, accompanied by cell trapping
in the high-shear regions surrounding the depletion. This trapping was attributed to
the strong alignment of the swimming cells with the flow under high shear, which
hinders their ability to swim across streamlines. Quite curiously, they reported that
maximum depletion is achieved at a critical imposed shear rate of approximately
10 s−1, above which both trapping and depletion become weaker. A simple Langevin
model capturing the effects of self-propulsion, shear rotation and diffusion was also
proposed to explain these observations, and was able to reproduce the salient features
of the experiments.

Models and simulations explaining the mechanisms leading to these rich dynamics
have been relatively scarce. Direct numerical simulations of hydrodynamically
interacting swimming particles confined to a gap between two plates were first
performed by Hernández-Ortiz, Stoltz & Graham (2005) and Hernández-Ortiz,
Underhill & Graham (2009) using a simple dumbbell model, and indeed captured
a strong particle accumulation at the boundaries in dilute systems. As the mean
swimmer density was increased, collective motion and mixing due to particle–particle
hydrodynamic interactions led to a decrease in the concentration near the walls.
Accumulation was also observed in simulations of self-propelled spheres by Elgeti
& Gompper (2013), who entirely neglected hydrodynamic interactions. This study, as
mentioned above, suggests that wall hydrodynamic interactions are not required to
explain migration, and neither is shape anisotropy. Rather, the simple combination
of cell swimming, steric exclusion by the walls and diffusive processes is sufficient
to capture accumulation, and Elgeti & Gompper (2013) also proposed a simple
Fokker–Planck description of the suspension that shares similarities with the present
work and was able to explain their results. A similar continuum model was also
proposed by Lee (2013), who derived analytical expressions for the ratio of particles
in the bulk versus near-wall region in the limits of weak and strong rotational
diffusion. Very recently, Li & Ardekani (2014) performed direct numerical simulations
of confined suspensions of spherical squirmers that propel via an imposed slip
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velocity, and reported strong accumulation at the boundaries irrespective of the details
of propulsion. They also noted the tendency of particles to align normal to the wall
in the near-wall region.

The effects of an external flow have also been addressed using discrete particle
models and simulations. The dynamics of isolated deterministic microswimmers in
Poiseuille flow were studied in detail by Zöttl & Stark (2012, 2013), who found that
such swimmers perform either an upstream-oriented periodic swinging motion or a
periodic tumbling motion depending on their location in the channel. Suspensions
of interacting swimmers in pressure-driven flow have also been simulated, notably
by Nash et al. (2010) and Costanzo et al. (2012), who both observed aggregation
at the walls together with upstream swimming as a result of the rotation of the
particles by the flow. More recently, Chilukuri, Collins & Underhill (2014) extended
the simulation method of Hernández-Ortiz et al. (2009) to account for a Poiseuille
flow. Similar trends as reported earlier were observed, including wall accumulation
and upstream swimming, as well as the reduction of accumulation with increasing
flow rate. In addition, they also reported the formation of a depletion layer near the
channel centreline in strong flows, in agreement with the microfluidic experiments
of Rusconi et al. (2014). Simple scalings for the dependence of this depletion with
shear rate, swimming speed and channel width were also proposed.

While these various numerical simulations have been able to reproduce the
relevant features of previous experiments, a clear unified theoretical model capable
of capturing and explaining all of the above effects based on conservation laws and
microscopic swimmer dynamics is still lacking. In unconfined systems, much progress
has been made over the past decade in the description of the behaviour of active
suspensions using continuum kinetic theories (Subramanian & Koch 2009; Marchetti
et al. 2013; Saintillan & Shelley 2013). One such class of models, introduced by
Saintillan & Shelley (2008a,b) to explain the emergence of collective motion in
semi-dilute suspensions, is based on a conservation equation for the distribution
function Ψ (x, p, t) of particle positions and orientations, in which fluxes arise due
to self-propulsion, advection and rotation by the background fluid flow, as well as
diffusive processes. When coupled to a model for the fluid flow (whether externally
imposed or driven by the swimmers themselves), this conservation equation can be
linearized for the purpose of a stability analysis or integrated in time to investigate
nonlinear dynamics. This approach, which also relates to other models developed
in the context of active liquid crystals (Baskaran & Marchetti 2009; Forest, Wang
& Zhou 2013; Marchetti et al. 2013), has been very successful in elucidating the
mechanisms leading to collective motion at a suspension level. However, attempts to
apply such continuum kinetic theories to confined suspensions have been few and far
between, in part due to the complexity of the boundary conditions that need to be
enforced on the distribution function.

In this paper, we present a simple continuum theory for the dynamics and transport
of a dilute suspension of Brownian active swimmers in a pressure-driven channel flow
between two parallel flat plates. To focus on the effects of steric confinement and its
interaction with the flow, we neglect particle–particle and particle–wall hydrodynamic
interactions entirely but incorporate a detailed treatment of the boundary conditions
for the distribution function. As we show below, our theory is able to capture all the
different regimes discussed above, including wall accumulation in the absence of flow,
and upstream swimming, depletion at the centreline and trapping in high-shear regions
when a flow is applied. We introduce the governing equations, boundary conditions
and non-dimensionalization in § 2, where we also derive a simpler approximate
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FIGURE 1. Problem definition: a dilute suspension of slender active particles with
positions x= (x, y, z) and orientations p= (sin θ cosφ, sin θ sinφ, cos θ) is confined between
two parallel flat plates (z=±H) and subject to an imposed pressure-driven parabolic flow.

model based on moment equations. The equilibrium distributions in the absence of
flow are obtained in § 3, where wall accumulation is seen to be accompanied by a
net polarization of the particle distribution near the boundaries, and where a very
simple expression is derived for the concentration profile across the channel in terms
of the parameters of the problem. The effects of an external Poiseuille flow are
discussed in § 4, where a numerical solution of the governing equations captures
upstream swimming and shear trapping in the relevant parameter ranges, and where
both effects are also explained theoretically using asymptotic analyses in the weak-
and strong-flow regimes. We summarize our results in § 5 and discuss them in the
light of the recent literature in the field.

2. Governing equations
2.1. Problem definition and kinetic model

We analyse the dynamics in a dilute suspension of self-propelled slender particles
confined between two parallel flat plates and placed in an externally imposed pressure-
driven flow as illustrated in figure 1. The channel half-width is denoted by H, and is
assumed to be much greater than the characteristic length L of the particles (H/L�1),
so that the finite size of the particles can be neglected. The external flow follows the
parabolic Poiseuille profile

U(x)=U(z) ŷ=Um[1− (z/H)2] ŷ, (2.1)

with maximum velocity Um at the centreline (z = 0). The shear rate varies linearly
with position z across the channel:

S(z)= dU
dz
=−γ̇w

z
H
, (2.2)

where γ̇w= 2Um/H is the maximum absolute shear rate attained at the walls (z=±H).
Following previous models for active suspensions (Saintillan & Shelley 2008a,b),

the configuration of the active particles is captured by the probability distribution
function Ψ (x, p, t) of finding a particle at position x = (x, y, z) with orientation
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p = (sin θ cos φ, sin θ sin φ, cos θ) at time t, where p also defines the direction of
swimming. Conservation of particles is expressed by the Smoluchowski equation (Doi
& Edwards 1986)

∂Ψ

∂t
+∇x · (ẋΨ )+∇p · ( ṗΨ )= 0, (2.3)

where the translational flux velocity ẋ captures self-propulsion with constant velocity
Vs in the direction of p, advection by the imposed flow and centre-of-mass diffusion
with isotropic and constant diffusivity dt:

ẋ= Vs p+U(z)− dt∇x lnΨ. (2.4)

Particle rotations are captured by the angular flux velocity ṗ, which includes
contributions from the imposed flow via Jeffery’s equation (Jeffery 1922; Bretherton
1962), and from rotational diffusion with diffusivity dr:

ṗ= S(z)(ẑ · p)(I − pp) · ŷ− dr∇p lnΨ. (2.5)

We have assumed that the particles have a high aspect ratio (r → ∞), leading
to a Bretherton constant of ζ = (r2 − 1)/(r2 + 1) ≈ 1, a good approximation
for common motile bacteria as well as many self-propelled catalytic micro-rods.
Particle–particle hydrodynamic interactions have also been neglected based on the
assumption of infinite dilution; such interactions could otherwise be included via an
additional disturbance velocity in the expressions for ẋ and ṗ (Saintillan & Shelley
2008b). As a result, we expect the distribution of particles to be uniform along
the x and y directions, and at steady state the Smoluchowski equation (2.3) for
Ψ (x, p, t)=Ψ (z, p) then simplifies to

Vs cos θ
∂Ψ

∂z
− dt

∂2Ψ

∂z2
+ S(z)∇p · [cos θ(I − pp) · ŷΨ ] = dr∇2

pΨ. (2.6)

This equation simply expresses the balance of self-propulsion, translational diffusion,
particle alignment by the imposed flow and rotational diffusion.

In this work, we treat the translational and rotational diffusivities dt and dr as
independent constants, which could result from either Brownian motion or various
athermal sources of noise (Drescher et al. 2011; Garcia et al. 2011). The athermal
contribution to diffusion may arise due to tumbling or other fluctuations in the
swimming actuation of motile micro-organisms, or from fluctuations in the chemical
actuation mechanism of catalytic particles. In many active suspensions, such athermal
fluctuations are in fact the dominant source of diffusion.

2.2. Boundary conditions
In the continuum limit, the impenetrability of the channel walls is captured by
prescribing that the normal component of the translational flux be zero at both walls:

ẑ · ẋ= 0 at z=±H. (2.7)

Inserting (2.4) for the translational flux, this leads to a Robin boundary condition for
the probability distribution function,

dt
∂Ψ

∂z
= Vs cos θ Ψ at z=±H, (2.8)
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expressing the balance of translational diffusion and self-propulsion in the wall-normal
direction. Equation (2.8) implies that particles pointing towards a wall (cos θ > 0 for
the top wall at z=+H) incur a positive wall-normal gradient (∂Ψ/∂z> 0), whereas
particles pointing away from the wall (cos θ < 0) incur a negative gradient. This
suggests that sorting of orientations should occur and lead to a net polarization
towards the walls, accompanied by near-wall accumulation. These effects will indeed
be confirmed in § 3. It is important to note that the boundary condition (2.8) requires
that the wall-normal swimming flux be balanced by a diffusive flux. In the complete
absence of translational diffusion (dt = 0), the swimming flux can no longer be
balanced at the wall: this singular limit, which is ill-posed in our mean-field theory,
will not be addressed here. Note also that the balance of the wall-normal fluxes
hints at a length scale of `a = dt/Vs for wall accumulation, as we demonstrate more
quantitatively below.

Other types of boundary conditions have been considered in previous works. In
particular, several studies have implemented the condition∫

Ω

ẑ · ẋΨ d p= 0 at z=±H, (2.9)

where Ω denotes the unit sphere of orientation. Equation (2.9) captures the
zeroth orientational moment of (2.8) and expresses conservation of active particle
concentration. However, this is a weaker condition than (2.8), which can be enforced
in a variety of ways and is therefore insufficient as a boundary condition. It is often
implemented numerically using a reflection condition on the distribution function.
This reflection condition was first used by Bearon, Hazel & Thorn (2011) in a
two-dimensional model of suspensions of gyrotactic swimmers constrained to a
planar domain. Ezhilan, Pahlavan & Saintillan (2012) also imposed equation (2.9)
using the reflection condition for the case of a chemotactic active suspension confined
to a thin liquid film, where the primary mechanism for accumulation was chemotaxis
as opposed to kinematics. In the absence of external fields, however, the reflection
boundary condition allows for a uniform isotropic solution throughout the channel and
is therefore unable to capture near-wall accumulation or upstream swimming when
a flow is imposed (see appendix A for more details). Kasyap & Koch (2014) also
considered chemotactic active suspensions in thin films but used a position/orientation
decoupling approximation for the probability distribution function Ψ (x, p, t), allowing
them to derive a boundary condition for the number density field expressing the
balance of the chemotactic and diffusive fluxes at the boundaries. To our knowledge,
the only previously reported use of the boundary condition (2.8) for a confined
active suspension was in the work of Elgeti & Gompper (2013), whose analysis was
restricted to equilibrium distributions in the absence of flow and in the limits of
narrow channels or weak propulsion.

Finally, it should be kept in mind that the simple boundary condition (2.8) neglects
the finite size of the particles and is therefore inaccurate very close to the walls,
where steric exclusion prohibits certain particle configurations and should lead to a
depletion layer as observed in experiments (Takagi et al. 2014). The implications
of steric exclusion are discussed further in appendix B, where a more detailed
boundary condition is derived and enforced on the hypersurface separating allowed
from forbidden configurations (Nitsche & Brenner 1990; Schiek & Shaqfeh 1995;
Krochak, Olson & Martinez 2010). As we show there, the effects of steric exclusion
are weak in wide channels (H/L� 1) such as the ones considered in this work.
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2.3. Dimensional analysis and scaling
Dimensional analysis of the governing equations reveals three dimensionless groups:

Pes = Vs

2drH
, Pef = γ̇w

dr
, Λ= dtdr

V2
s

. (2.10a−c)

The first parameter Pes, or swimming Péclet number, can be interpreted as the ratio
of the characteristic time scale for a particle to lose memory of its orientation due
to rotational diffusion over the time it takes it to swim across the channel width.
Equivalently, it is also the ratio of the persistence length of particle trajectories (`p=
Vs/dr) over the channel width (2H). The second parameter Pef , or flow Péclet number,
compares the same diffusive time scale to the characteristic time for a particle to align
under the imposed velocity gradient. The third parameter Λ relates the translational
and rotational diffusivities to the swimming speed and is a fixed constant for a given
particle type. It can be interpreted as an inverse measure of the strength of propulsion
of a swimmer with respect to fluctuations, and the limits of Λ→ 0 and Λ→∞
describe the strong and weak propulsion cases, respectively. When Λ is held constant,
Pes also reduces to a measure of the degree of confinement, with Pes→ 0 and Pes→
∞ describing the limits of weak and strong confinement, respectively.

In the following, we non-dimensionalize the governing equations using the
characteristic time, length and velocity scales

tc = d−1
r , `c =H, vc =Hdr, (2.11a−c)

and also normalize the distribution function Ψ by the mean number density n defined
as

n= 1
2H

∫ H

−H

∫
Ω

Ψ (z, p) d p dz. (2.12)

After non-dimensionalization, the conservation equation (2.6) becomes

Pes cos θ
∂Ψ

∂z
− 2ΛPe2

s
∂2Ψ

∂z2
+ Pef

2
S(z)∇p · [cos θ(I − pp) · ŷΨ ] = 1

2
∇2

pΨ, (2.13)

where the dimensionless shear rate profile is simply S(z)=−z. The boundary condition
(2.8) also becomes

∂Ψ

∂z
= 1

2ΛPes
cos θ Ψ at z=±1. (2.14)

Note that the choice of H for the characteristic length scale is convenient, as it sets
the positions of the boundaries to z=±1 in the dimensionless system. However, we
will see below that alternative length scales are more judiciously chosen in certain
limits due to the presence of boundary layers.

2.4. Orientational moment equations
Equation (2.13), together with boundary condition (3.23), cannot be solved analytically
in general. While a numerical solution is possible, as we show below, analytical
progress can still be made in terms of orientational moments of the distribution
function (Saintillan & Shelley 2013). More precisely, we introduce the zeroth, first
and second moments of Ψ (z, p) as

c(z)= 〈1〉, m(z)= 〈p〉, D(z)= 〈pp− I/3〉, (2.15a−c)
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where the angular brackets 〈·〉 denote the orientational average

〈h(p)〉 =
∫
Ω

h(p)Ψ (z, p) d p. (2.16)

The zeroth moment c(z) corresponds to the local concentration of particles. The next
two moments are directly related to the polarization vector P(z) and to the nematic
order parameter tensor Q(z) commonly used in the description of liquid-crystalline
systems (Marchetti et al. 2013) as

m(z)= c(z)P(z), D(z)= c(z)Q(z). (2.17a,b)

Knowledge of these as well as higher moments also allows one to recover the full
distribution function as

Ψ (z, p)= 1
4π

c(z)+ 3
4π

p ·m(z)+ 15
8π

pp : D(z)+ · · · , (2.18)

which can also be interpreted as a spectral expansion of Ψ (z, p) on the basis of
spherical harmonics. Near isotropy this expansion converges rapidly, which justifies
truncation after a few terms. If only the first three terms corresponding to c, m and D
are retained, a closed system of equations can be derived for these variables by taking
moments of the conservation equation (2.13) (Baskaran & Marchetti 2009; Saintillan
& Shelley 2013).

In the problem of interest to us here, symmetries dictate that the only non-zero
components of m and D are mz and Dzz = −2Dxx = −2Dyy in the absence of flow.
When a flow is applied in the y direction, my and Dyz = Dzy are also expected to
become non-zero, and Dyy need no longer be equal to Dxx. The governing equations
for these variables can be obtained as

Pes
dmz

dz
− 2ΛPe2

s
d2c
dz2
= 0, (2.19)

Pes
dDzz

dz
− 2ΛPe2

s
d2mz

dz2
+
(

1
6Λ
+ 1
)

mz =− 1
10

Pef S(z)my, (2.20)

Pes
dDyz

dz
− 2ΛPe2

s
d2my

dz2
+my = 2

5
Pef S(z)mz, (2.21)

4
15

Pes
dmz

dz
− 2ΛPe2

s
d2Dzz

dz2
+ 3Dzz = 4

7
Pef S(z)Dyz, (2.22)

− 2
15

Pes
dmz

dz
− 2ΛPe2

s
d2Dyy

dz2
+ 3Dyy =−3

7
Pef S(z)Dyz, (2.23)

1
5

Pes
dmy

dz
− 2ΛPe2

s
d2Dyz

dz2
+ 3Dyz = Pef S(z)

(
1
10

c+ 5
14

Dzz − 2
7

Dyy

)
. (2.24)

No equation is needed for Dxx, which can simply be deduced from Dyy and Dzz using
the tracelessness of D. In each of these equations, the first term on the left-hand side
arises due to self-propulsion, the second term captures translational diffusion and the
third term rotational diffusion. Terms on the right-hand side arise from the externally
applied pressure-driven flow and vanish in the absence of flow (Pef = 0).
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Boundary conditions for these variables are also readily obtained by taking moments
of (3.23), yielding

dc
dz
= 1

2ΛPes
mz, (2.25)

dmz

dz
= 1

2ΛPes

(
Dzz + 1

3
c
)
,

dmy

dz
= 1

2ΛPes
Dyz, (2.26a,b)

dDzz

dz
= 2

15ΛPes
mz,

dDyy

dz
=− 1

15ΛPes
mz,

dDyz

dz
= 1

10ΛPes
my, (2.27a−c)

all to be enforced at z=±1. For symmetry reasons, we expect c, my, Dyy and Dzz to
be even functions of z, whereas mz and Dyz are expected to be odd functions.

Integrating equation (2.19) and making use of the boundary condition (2.25) easily
shows that (2.19) can be replaced by

mz − 2ΛPes
dc
dz
= 0 (2.28)

at every point in the channel, underlining the direct relation between transverse
polarization and concentration gradients. We also note that the normalization
condition (2.12) on the distribution function translates into an integral condition
on the concentration field expressing conservation of the total particle number:∫ 1

−1
c(z) dz= 2. (2.29)

As we discuss next, solution of the system (2.19)–(2.24) subject to the boundary
conditions (2.25)–(2.27) and to the integral constraint (2.29) is possible under certain
assumptions, and provides results that are in excellent quantitative agreement with
the full numerical solution of the Smoluchowski equation (2.13) over a wide range
of values of the Péclet numbers.

3. Equilibrium distributions in the absence of flow
We first analyse the case of no external flow (Pef = 0), where we expect the

boundary condition (3.23) to lead to near-wall accumulation and polarization as a
result of self-propulsion. In this case, the full governing equation (2.13) simplifies to

Pes

(
cos θ

∂Ψ

∂z
− 2ΛPes

∂2Ψ

∂z2

)
= 1

2
∇2

pΨ, (3.1)

subject to condition (3.23) at the walls. We note some interesting mathematical
properties of these equations. First, taking the cross-sectional average of (3.1) yields

∇2
p

(∫ 1

−1
Ψ dz

)
= 0, (3.2)

which implies that the gap-averaged orientation distribution is isotropic in the absence
of flow. Using the conservation constraint (2.29), we obtain∫ 1

−1
Ψ dz= 1

2π
, (3.3)
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which also implies that the first- and higher-order moments all average to zero across
the channel width when there is no flow.

It is also easily seen that the uniform and isotropic distribution Ψ = 1/4π is
an exact solution of (3.1) for all parameter values, though it violates the boundary
condition (3.23) when Λ 6= ∞. Inspection of the equations shows that, in the limit
of ΛPes = dt/2Vs→ 0, there is a loss of the higher derivative in both the governing
equation and the boundary condition. This singular limit suggests the existence of
an accumulation layer near the channel walls where the distribution departs from
the uniform isotropic state. Inside this boundary layer, the effects of self-propulsion
must be balanced by translational diffusion, notwithstanding the small value of ΛPes.
Rescaling the governing equation inside the boundary layer, however, does not lead to
analytical simplifications for finite Λ, so we turn to the simplified moment equations
for further characterization of particle distributions near the walls in § 3.1, where a
simple analytical solution is derived together with a scaling for the thickness of the
accumulation layer. We then describe how the limits of strong and weak propulsion
can be addressed using asymptotic expansions in §§ 3.2 and 3.3.

3.1. Theory based on moment equations
In the absence of flow, the moment equations derived in § 2.4 only involve c, mz and
Dzz, and simplify to

mz − 2ΛPes
dc
dz
= 0, (3.4)

Pes
dDzz

dz
− 2ΛPe2

s
d2mz

dz2
+
(

1
6Λ
+ 1
)

mz = 0, (3.5)

4
15

Pes
dmz

dz
− 2ΛPe2

s
d2Dzz

dz2
+ 3Dzz = 0, (3.6)

subject to the integral constraint (2.29) and to the boundary conditions

dmz

dz
= 1

2ΛPes

(
Dzz + 1

3
c
)
,

dDzz

dz
= 2

15ΛPes
mz at z=±1. (3.7a,b)

Using this set of equations, we first proceed to derive a relation between the values
of the concentration and wall-normal polarization at the boundaries. First, we integrate
equation (3.6) across the channel width and use the second boundary condition in (3.7)
to arrive at ∫ 1

−1
Dzz(z) dz= 0. (3.8)

Now, combining (3.4) and (3.5), integrating from z to 1 and making use of the first
boundary condition gives

Dzz − 2ΛPes
dmz

dz
+ 6Λ+ 1

3
c= 2Λ c(1). (3.9)

This relation can be integrated once more across the channel width. Using condition
(3.8) together with the parity properties of c and mz, this simplifies to

c(±1)=
(

1+ 1
6Λ

)
∓ Pesmz(±1), (3.10)
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FIGURE 2. (Colour online) Equilibrium distributions in the absence of flow and for
various swimming Péclet numbers Pes (with Λ = 1/6), obtained by numerical solution
of (2.13) using finite volumes: (a) concentration c, (b) wall-normal polarization mz, and
(c) wall-normal nematic order parameter Dzz.

providing a simple relation between concentration and polarization at the walls.
Inserting this relation into the first condition in (3.7) yields a new set of boundary
conditions that does not involve the concentration:

dmz

dz
= 1

2ΛPes

(
Dzz + 6Λ+ 1

18Λ

)
∓ 1

6Λ
mz,

dDzz

dz
= 2

15ΛPes
mz at z=±1. (3.11a,b)

Equations (3.5) and (3.6), together with these boundary conditions, form a coupled
system of second-order linear ordinary differential equations for mz and Dzz that can be
solved analytically. Once these variables are known, the concentration profile is easily
obtained from the polarization by integration of (3.4) along with condition (3.10).

Solving these equations yields complicated expressions for c, mz and Dzz that are
omitted here for brevity. The profiles, which are illustrated in figure 2 and will be
discussed in more detail below, reveal one important finding: while a significant wall-
normal polarization exists in the near-wall region, nematic alignment is relatively weak
throughout the channel for Λ& 0.1. This suggests seeking a yet simpler solution that
neglects nematic order altogether. If the moment expansion (2.18) is truncated after
two terms, the equations for c and mz simplify to

mz − 2ΛPes
dc
dz
= 0, −2ΛPe2

s
d2mz

dz2
+
(

1
6Λ
+ 1
)

mz = 0, (3.12a,b)

subject to the conditions

dmz

dz
= c

6ΛPes
at z=±1 and

∫ 1

−1
c(z) dz= 2. (3.13a,b)

Solving these equations is straightforward and provides elegant expressions for the
concentration and polarization profiles:

c(z)= B[6Λ cosh B+ cosh Bz]
6ΛB cosh B+ sinh B

, (3.14)

mz(z)= 6ΛPesB2 sinh Bz
3(6ΛB cosh B+ sinh B)

, (3.15)
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where

B−1 =ΛPes

√
12

1+ 6Λ
(3.16)

defines the dimensionless decay length of the excess concentration at the walls. In
dimensional terms, this decay length is given by B−1H = `a

√
3/(1+ 6Λ) where `a =

dt/Vs. In the limit of strong propulsion (Λ� 1), it simplifies to
√

3 `a. In the limit of
weak propulsion (Λ� 1), it becomes `d/

√
2 where `d =√dt/dr is a purely diffusive

length scale. For Brownian particles, `d is typically of the order of the particle size L,
though this may not be the case for active particles subject to athermal sources of
noise. Next, we focus more precisely on these two limits by rescaling the governing
equations with the appropriate scales identified here.

3.2. Strong propulsion limit: Λ→ 0
In the limit of small Λ, the above discussion suggests rescaling the Smoluchowski
equation using the accumulation length scale `a, yielding

cos θ
∂Ψ

∂z
− ∂

2Ψ

∂z2
=Λ∇2

pΨ, (3.17)

subject to the boundary condition

∂Ψ

∂z
= cos θ Ψ at z=±H∗. (3.18)

Here, H∗ = (2ΛPes)
−1 is the channel half-height rescaled by the accumulation length

scale `a. We recall that dt → 0 is an ill-posed limit in our theory and the analysis
presented here really corresponds to the limit of Λ→ 0 with finite ΛPes (finite H∗)
or, in terms of length scales, to the limit of `p→∞ with finite `a. In dimensional
terms, this corresponds to the limit of dr→ 0 with finite dt. The gap-averaged isotropy
constraint is now expressed as ∫ H∗

−H∗
Ψ dz= H∗

2π
. (3.19)

The leading-order solution corresponding to Λ= 0, which was previously obtained by
Elgeti & Gompper (2013), is written

Ψ (0)(z, θ)= H∗ cos θ
4π sinh(H∗ cos θ)

exp(z cos θ), (3.20)

and it is easily seen that it satisfies zero wall-normal flux pointwise throughout the
channel. In particular, it shows that wall accumulation is possible even in the absence
of rotational diffusion and is simply a result of a coupling between self-propulsion,
translational diffusion and confinement. This solution can then be corrected to order
O(Λ) by solving the first-order inhomogeneous equation

cos θ Ψ (1)(z, θ)− ∂Ψ
(1)

∂z
=∇2

p

∫ z

−H∗
Ψ (0)(z, θ) dz, (3.21)

subject to boundary condition (3.18). An exact analytical solution to this equation can
again be obtained but is cumbersome and omitted here for brevity.
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3.3. Weak propulsion limit: Λ→∞
In the limit of large Λ, the Smoluchowski equation is rescaled using the diffusive
length scale `d as

1√
Λ

cos θ
∂Ψ

∂z
− ∂

2Ψ

∂z2
=∇2

pΨ, (3.22)

subject to
∂Ψ

∂z
= 1√

Λ
cos θ Ψ at z=±H†, (3.23)

where H†= (2√ΛPes)
−1. The leading-order solution in the limit of Λ→∞ is uniform

and isotropic and corresponds to the case of a passive particle: Ψ (0)(z, θ)= 1/4π. It
can be corrected asymptotically using a regular perturbation expansion in powers of
Λ−1/2:

Ψ (z, θ)=Ψ (0)(z, θ)+Λ−1/2 Ψ (1)(z, θ)+Λ−1 Ψ (2)(z, θ)+ · · · . (3.24)

Recursively solving for higher-order terms yields

Ψ (1)(z, θ)= 3

4π
√

2 cosh(
√

2H†)
sinh(
√

2z) cos θ, (3.25)

Ψ (2)(z, θ)=
[
− 1

15
cosh
√

2z

cosh(
√

2H†)
+ tanh(

√
2H†)

5
√

3

cosh(
√

6z)

sinh(
√

6H†)

](
cos2 θ − 1

3

)
, (3.26)

which both satisfy the appropriate boundary conditions. Quite remarkably, it can
be seen that successive terms in the expansion (3.24) correspond to successive
orientational moments of the distribution function in (2.18), with Ψ (1) and Ψ (2)

describing the polarization and nematic order, respectively.

3.4. Numerical results and discussion
Figure 2 shows the full numerical solution for the concentration c, wall-normal
polarization mz and nematic order parameter Dzz obtained by finite-volume solution
of the Smoluchowski equation (2.13) as described in appendix B. Here, we fix
the value of Λ and focus on the effect of Pes, which is an inverse measure of
confinement. The concentration profiles shown in figure 2(a) exhibit significant
accumulation of particles near the boundaries, especially at low values of Pes. As
anticipated, this accumulation is accompanied by polarization towards the boundaries
as a direct consequence of the boundary condition (2.25), as well as by a weak
nematic alignment. As Pes increases, the spatial heterogeneity and anisotropy near
the walls progressively extend through the entire channel as the two boundary layers
thicken and eventually merge. Further increase in the swimming Péclet number leads
to a flattening of the profiles, which is especially significant when Pes > 1. This
flattening is a direct consequence of the scaling of translational diffusion with Pe2

s in
(2.13), causing it to overwhelm self-propulsion, which scales with Pes. The influence
of Λ is illustrated in figure 3, where it is seen to be similar to that of Pes: increasing
Λ leads to a thickening of the boundary layers and flattening of the concentration
profiles, again due to the scaling of translational diffusion with Λ in (2.13).

The finite-volume numerical solution of the full conservation equation (2.13) is
in excellent quantitative agreement with the two- and three-moment approximations
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FIGURE 3. (Colour online) Equilibrium distributions in the absence of flow and for
various values of Λ (with Pes = 0.25), obtained by numerical solution of (2.13) using
finite volumes: (a) concentration c, (b) wall-normal polarization mz, and (c) wall-normal
nematic order parameter Dzz. Solutions based on moment equations are nearly identical,
as illustrated in figure 4.

E
rr

or

10–3

10–6

10–9

10–12
43210

FIGURE 4. (Colour online) The relative r.m.s. error for the concentration between the
finite-volume solution and the two-moment analytical solution (3.14) for different values of
Λ. Solutions based on moment equations are nearly identical to the finite-volume solution
for sufficiently large values of Λ.

derived previously, which are not shown in figure 2 as they are nearly indistinguishable
over the entire channel width as long as Λ& 0.1. The root-mean-square (r.m.s.) error
between the two-moment solution of (3.4) and the finite-volume solution is indeed
plotted in figure 4, where it remains below 10−3 for all values of Pes considered
here when Λ & 0.1. This finding may seem quite surprising considering the strong
approximation made when truncating expansion (2.18) after only two terms, and
strongly validates the use of approximate moment equations such as (2.19)–(2.24)
when modelling active suspensions, at least in the absence of flow. For very small
values of Λ, however, nematic alignment at the walls becomes significant, as seen in
figure 3(c), so that the nematic tensor can no longer be neglected and the two-moment
solution loses its accuracy; in this case, the alternative expressions derived in the small
Λ limit in § 3.2 can be used instead.

The influence of Pes on wall accumulation is analysed more quantitatively in
figure 5, showing the values of the wall concentration c(±1), the boundary layer
thickness δ defined as the distance from the wall where c(1− δ)= 1, and the fraction
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FIGURE 5. (Colour online) Wall accumulation in the absence of flow as a function of Pes
(at Λ= 1/6): (a) concentration c(±1) at the walls; (b) boundary layer thickness δ, defined
as the distance from the wall where c(1− δ)= 1; and (c) fraction δ∗ of particles inside
the boundary layer, defined as the integral of c(z) over the boundary layer thickness. The
solid line shows the theoretical prediction based on the two-moment solution (3.14), and
symbols show full numerical results using finite volumes.

δ∗ of particles inside the boundary layer defined as

δ∗ =
∫ 1

1−δ
c(z) dz. (3.27)

Analytical expressions for these quantities can be derived from the two-moment
solution (3.14). In particular, the boundary layer thickness is obtained as

δ(Pes)= 1− 1
B

log

sinh B
B
±
[(

sinh B
B

)2

− 1

]1/2
 , (3.28)

which has the two limits

lim
Pes→0

δ(Pes)= 0 and lim
Pes→∞

δ(Pes)= 1− 1√
3
. (3.29a,b)

Similarly, the fraction of particles inside the boundary layer is given by

δ∗(Pes)= 1− 6ΛB(1− δ) cosh B+ sinh[B(1− δ)]
6ΛB cosh B+ sinh B

, (3.30)

and has the same limits as δ(Pes) when Pes→ 0 and ∞.
As shown in figure 5(a), the wall concentration reaches its maximum in the limit

of Pes→ 0, and steadily decreases towards 1 as Pes increases due to the smoothing
effect of translational diffusion. This is accompanied by an increase in the boundary
layer thickness δ, which asymptotes at high values of Pes. The fraction δ∗ of particles
near the walls shows a similar trend, but interestingly also exhibits a weak maximum
for Pes ≈ 1.135 when wall accumulation due to self-propulsion and translational
diffusion are of similar magnitudes; at this value of Pes, δ∗ ≈ 0.46 corresponding
to nearly half the particles being trapped near the walls. As previously observed in
figure 4, excellent agreement is obtained between the two-moment approximation and
the numerical solution of the full governing equations.
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4. Equilibrium distributions and transport in flow
4.1. Weak-flow limit: regular asymptotic expansion

We now proceed to analyse the effects of an external pressure-driven flow, first
focusing on the case of a weak flow for which Pef�1. Since the parameter Λ is fixed
for a given type of swimmers, we keep it constant in the rest of the paper and focus
on the effects of Pes and Pef . The form of the governing equations suggests seeking
an approximate solution as a regular expansion of the moments of the distribution
function in powers of Pef . The leading-order O(Pe0

f ) solution corresponding to the
absence of flow was previously calculated in § 3. It is henceforth denoted by c(0),
m(0), D(0), and we recall that m(0)

y = D(0)
yz = 0. Inspection of the moment equations

(2.19)–(2.24) reveals that the interaction of the applied shear profile S(z) with this
leading-order solution perturbs my and Dyz at order O(Pef ). On the other hand, c, mz,
Dzz and Dyy are only perturbed by the flow at order O(Pe2

f ) due to its interaction with
my and Dyz. Based on these observations, we expand the solution as

c(z)= c(0)(z)+ Pe2
f c(2)(z)+O(Pe3

f ), (4.1)

mz(z)=m(0)
z (z)+ Pe2

f m(2)
z (z)+O(Pe3

f ), (4.2)

Dzz(z)=D(0)
zz (z)+ Pe2

f D(2)
zz (z)+O(Pe3

f ), (4.3)

Dyy(z)=D(0)
yy (z)+ Pe2

f D(2)
yy (z)+O(Pe3

f ), (4.4)

my(z)= Pef m(1)
y (z)+O(Pe3

f ), (4.5)

Dyz(z)= Pef D(1)
yz (z)+O(Pe3

f ). (4.6)

We focus here on determining the leading-order corrections to my and Dyz, which
capture streamwise polarization and nematic alignment with the applied shear,
respectively. The O(Pef ) moment equations are written

Pes
dD(1)

yz

dz
− 2ΛPe2

s

d2m(1)
y

dz2
+m(1)

y =
2
5

S(z)m(0)
z , (4.7)

Pes

5
dm(1)

y

dz
− 2ΛPe2

s

d2D(1)
yz

dz2
+ 3D(1)

yz = S(z)
(

1
10

c(0) + 1
2

D(0)
zz

)
, (4.8)

subject to boundary conditions

dm(1)
y

dz
= 1

2ΛPes
D(1)

yz ,
dD(1)

yz

dz
= 1

10ΛPes
m(1)

y at z=±1. (4.9a,b)

Note that the forcing terms on the right-hand sides of equations (4.7) and (4.8) are
known and capture the interaction of the local shear rate S(z) with the equilibrium
distributions in the absence of flow.

A numerical solution of equations (4.7)–(4.9) is plotted in figure 6 for different
values of Pes. At low values of the swimming Péclet number, figure 6(a) shows an
upstream polarization (my < 0) near the boundaries, and a downstream polarization
(my > 0) near the centre of the channel. The upstream polarization, which has
previously been observed in both experiments and simulations and is at the origin
of the well-known phenomenon of upstream swimming, is a simple and direct
consequence of the shear rotation of the particles near the wall, which tend to point
towards the walls in the absence of flow, as explained in § 3. This interaction is
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FIGURE 6. (Colour online) Effect of a weak applied flow: leading-order O(Pef ) corrections
of (a) streamwise polarization my and (b) shear nematic alignment Dyz for different values
of the swimming Péclet number, obtained by numerical solution of (4.7)–(4.9).

encapsulated in the right-hand side in (4.7). The downstream polarization near the
centreline is a more subtle effect arising from self-propulsion through the first term on
the left-hand side of (4.7). As Pes increases and the boundary layers thicken, upstream
swimming becomes weaker near the boundaries due to the weaker wall-normal
polarization there; however, my is also observed to become negative across the entire
channel owing to the thickening of the polarized boundary layers into the bulk of the
channel, as previously shown in figure 2(b).

The mean streamwise swimming velocity Vy of the active particles with respect to
the imposed flow can be defined in terms of the polarization as

Vy = 1
2

∫ 1

−1
Pes my(z) dz= PesPef

2

∫ 1

−1
m(1)

y (z) dz= PesPef m(1)
y . (4.10)

An expression for m(1)
y can be derived based on the moment equations. We first take

the cross-sectional average of (4.7) and use the first boundary condition to obtain

m(1)
y =−

1
5

∫ 1

−1
z m(0)

z (z) dz. (4.11)

Since m(0)
z is an odd function of z with m(0)

z (z) > 0 for z > 0, the integrand on the
right-hand side is always positive across the channel, and therefore the mean upstream
polarization is negative: m(1)

y < 0. This also implies that Vy < 0, i.e. there is a net
upstream flux of particles against the mean flow for all values of Λ and Pes in the
weak-flow limit. Using (3.5) for m(0)

z (z), we can rewrite the right-hand side as

m(1)
y =−

1

5
(

1
6Λ
+ 1
) [2ΛPe2

s

∫ 1

−1
z

d2m(0)
z

dz2
dz− Pes

∫ 1

−1
z

dD(0)
zz

dz
dz
]
. (4.12)

After integration by parts and application of the boundary condition on m(0)
z (z) together

with (3.8), this simplifies to

m(1)
y =−

2Pes

15
(

1
6Λ
+ 1
) [c(0)(1)− 6ΛPes m(0)

z (1)]. (4.13)
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FIGURE 7. (Colour online) Equilibrium concentration profiles (at Λ= 1/6) for (a) Pes =
0.25 (strong wall accumulation) and (b) Pes = 1.0 (weak accumulation) and for various
values of the flow Péclet number Pef , obtained by finite-volume solution of the governing
equation (2.13).

Recalling that c(0)(1) and m(0)
z (1) are related via (3.10), we obtain two expressions

for the mean streamwise swimming velocity in terms of either the concentration or
the wall-normal polarization at the top wall in the absence of flow:

Vy =−4Λ
5

Pe2
s Pef [c(0)(1)− 1] =− 2

15
Pe2

s Pef [1− 6ΛPesm(0)
z (1)]. (4.14)

Since the concentration at the wall in the absence of flow always exceeds the mean
when Pes > 0, equation (4.14) again confirms that Vy < 0. If we further make use of
the simplified two-moment analytical solution (3.14) for the concentration profile, we
arrive at a simple expression for the mean upstream velocity in terms of the swimming
and flow Péclet numbers:

Vy =−4Λ
5

Pe2
s Pef

[
B cosh B− sinh B

6ΛB cosh B+ sinh B

]
. (4.15)

This simple analytical prediction for Vy will be tested against numerical simulations
at arbitrary Pef in § 4.2, where it will be shown to provide an excellent estimate for
the swimming flux up to Pef ≈ 2.

The effects of the external flow on nematic alignment are also illustrated in
figure 6(d), where Dyz is found to vary almost linearly across the channel width and
has the same sign as the external shear rate profile S(z). The right-hand side in (4.8)
provides a simple explanation for these findings, where we see that shear nematic
alignment results primarily from the interaction of the flow with the concentration
profile and with the wall-normal nematic alignment. As Pes increases, shear nematic
alignment decreases due to the decrease in c and Dzz inside the boundary layers as
seen in figure 2(a,c), and to self-propulsion through the first term on the left-hand
side of (4.8).

4.2. Strong-flow limit: scaling analysis
As we shall see in § 4.3 and figure 7, the regime of high flow Péclet number is also
quite interesting, as it can result in a depletion near the channel centreline surrounded
by regions where particles become trapped. The thickness of this depletion region will
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be found to decrease with increasing flow strength, suggesting the presence of another
boundary layer near z = 0 in the limit of Pef � 1. Insight into this regime can be
gained by analysing the behaviour of the governing equation (2.13) for Pef � 1 and
Pes� 1. If the swimming Péclet number is low, the wall boundary layers are very thin
and have negligible impact on the dynamics in the bulk of the channel. Inspection of
(2.13) suggests that, in the outer region away from both the channel walls and the
centreline, the dominant balance is between shear alignment and rotational diffusion:

Pef

2
S(z)∇p · [cos θ(I − pp) · ŷΨ ] ≈ 1

2
∇2

pΨ. (4.16)

In this region, the concentration is expected to be nearly uniform, and the particle
orientation distribution is primarily nematic as a result of the competition between the
local shear rate and rotational diffusion (as would occur in a passive rod suspension).
This corresponds to the shear-trapping region where cross-streamline migration is very
weak owing to the strong alignment with the flow.

However, as we move closer and closer to the centreline, the local shear rate
decreases, causing a concomitant decrease in shear alignment and increase in
cross-streamline migration due to self-propulsion. This transition corresponds to
the edge of the central boundary layer from which particles are depleted, and the
position δD of this transition region (or half-thickness of the depletion layer) can be
estimated by balancing the magnitudes of the terms describing self-propulsion and
shear alignment in (2.13), i.e.

Pes

δD
∼ Pef

2
δD, (4.17)

from which we find
δD ≈C

√
χ, (4.18)

where the prefactor C is a numerical constant and where we have defined

χ = Pes

Pef
= Vs

2γ̇wH
. (4.19)

The dimensionless group χ can be interpreted as the ratio of the time scale γ̇ −1
w it

takes a particle to align with the flow over the characteristic time scale 2H/Vs it
takes it to swim across the channel width. If χ is small, particles align with the flow
much faster than they can cross the channel, leading to significant shear trapping. On
the other hand, if χ is large, particles cross the channel much faster than they align
with the flow and shear trapping does not occur. As we show in appendix C, this
scaling for δD can indeed also be derived by considering the individual trajectories of
deterministic swimmers released from the centreline, which can be shown to become
trapped at a distance of the order of δD. It will also be shown to agree quite well with
numerical results in § 4.3, where we will find that δD≈ 2.404

√
χ provides an excellent

estimate for the thickness of the depletion layer when Pes . 0.25 and Pef & 50.
To gain further understanding of the effect of shear rate on the intensity of depletion,

we rescale lengths by δD inside the central boundary layer to rewrite the governing
equation (2.13) as

Γ

C
cos θ

∂Ψ

∂z
− 2Λ

Γ 2

C2

∂2Ψ

∂z2
− CΓ

2
z∇p · [cos θ(I − pp) · ŷΨ ] = 1

2
∇2

pΨ, (4.20)
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where the dimensionless group Γ = √
PesPef emerges as the most significant

parameter governing the profile of the depletion layer. Unsurprisingly, we find that
self-propulsion and shear rotation have the same magnitude upon rescaling. In this
region, self-propulsion, which scales with Γ , has the effect of enhancing depletion by
driving particles away from the centreline; this competes against translational diffusion,
scaling with Γ 2, which has the effect of smoothing concentration gradients and thus
hampers depletion. This suggests the following dependence of the concentration profile
on Pef . As flow strength is increased from small values, the depletion layer forms
and continually narrows according to (4.18) for δD. As long as Γ < 1, self-propulsion
dominates translational diffusion and increasing Pef (and therefore Γ ) enhances
depletion. This trend reverses when Γ ∼ O(1), when translational diffusion starts
to overcome self-propulsion, leading to a subsequent decrease in the strength of
depletion for Γ > 1. This qualitative explanation for the non-monotonic dependence
of the strength of depletion upon Γ (and hence upon the mean shear rate of the
imposed Poiseuille flow) is consistent with the experimental observations of Rusconi
et al. (2014), and is also borne out by numerical solutions of the governing equations,
as we describe next.

4.3. Arbitrary flow strengths: finite-volume calculations and discussion
We now test and extend the key predictions from the weak-flow asymptotics and
strong-flow scaling analysis from the preceding sections by performing finite-volume
numerical simulations of the governing equation (2.13) for arbitrary values of Pes and
Pef using the algorithm of appendix C. Typical concentration profiles are illustrated
in figure 7 for various values of Pef , and for the two values of Pes = 0.25 and 1.0
corresponding to cases where wall accumulation in the absence of flow is strong
and weak, respectively. In both cases, the leading effect of the external flow on
c is to decrease wall accumulation. This trend is easily understood as a result of
the alignment of the particles with the flow, which reduces wall-normal polarization
and thereby hinders accumulation. This decrease in accumulation also results in a net
increase in the concentration in the central parts of the channel and in the flattening of
the profiles in the strong-flow limit. When Pes is small, as in figure 7(a), a depletion
layer is also observed to form near the channel centreline and to progressively narrow
with increasing Pef , in agreement with the theoretical predictions of § 4.2. At high
values of Pef , the three distinct regions identified in § 4.2 (wall accumulation, shear
trapping and centreline depletion) in fact become clearly visible. However, if the
swimming Péclet number is increased to Pes = 1.0, as in figure 7(b), the thickening
of the wall boundary layers suppresses shear trapping and depletion at the centreline,
leading to a nearly uniform concentration profile in the strong-flow limit.

Corresponding profiles for the wall-normal and streamwise polarization are also
shown in figure 8. As expected, rotation of the particles by the flow causes a decrease
in the wall-normal polarization, and also results in a non-zero streamwise polarization
my, as previously discussed in § 4.1. This streamwise polarization is especially strong
in the near-wall region, where my is negative, indicating upstream swimming. It is
significantly weaker near the centre of the channel, where it is found to be positive
for Pes = 0.25 but remains negative across the entire channel when Pes = 1.0 owing
to the overlap of the two wall boundary layers.

These trends are made more quantitative in figure 9, showing the dependence of
c(±1), my(±1) and my(0) on the swimming and flow Péclet numbers. As previously
discussed, the wall concentration is seen to decrease with increasing flow strength
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FIGURE 8. (Colour online) Equilibrium streamwise and wall-normal polarization profiles
(at Λ= 1/6) for (a,c) Pes = 0.25 and (b,d) Pes = 1.0 and for various values of the flow
Péclet number Pef , obtained by finite-volume solution of the governing equation (2.13).
The streamwise polarization my is shown in (a,b), and the wall-normal polarization mz in
(c,d).
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FIGURE 9. (Colour online) Effect of swimming and flow Péclet numbers on: (a) wall
concentration c(±1), (b) streamwise polarization my(±1) at the channel walls, and
(c) streamwise polarization my(0) at the channel centreline.

irrespective of the value of Pes, and asymptotically tends to 1 in the strong-flow limit
as the concentration profiles flatten. Figure 9(b) shows that the streamwise polarization
at the walls is always negative, which implies that the active particles always swim
upstream near the boundaries. Interestingly, we find that there is maximum upstream
swimming at Pef ≈ 10, and the upstream motion is reduced at higher values of the
flow Péclet number. The streamwise polarization at the channel centreline shows
complex trends, as shown in figure 9(c). As predicted by the weak-flow asymptotic
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FIGURE 10. (Colour online) (a) Magnitude of the average upstream swimming velocity
|Vy| as a function of Pef for different values of Pes (at Λ = 1/6), and (b) dependence
of |Vy|/Pef on Pes for different values of Pef . Symbols show finite-volume numerical
simulations, and dotted lines show the theoretical prediction of (4.14).

analysis of § 4.1, my(0) is found to be positive for low values of Pes and negative for
high values of Pes. Its absolute value increases with flow strength in both cases up
to Pef ≈ 10, beyond which further increasing flow strength reduces the polarization.
The decrease in both my(±1) and my(0) at high Pef is a likely consequence of the
dominant effect of the shear alignment term in (2.13), which promotes nematic rather
than polar order.

The dependence of the average streamwise swimming velocity Vy defined in (4.10)
on both Péclet numbers is shown in figure 10, where numerical results are compared
with the weak-flow theoretical prediction of (4.14). Consistent with figure 9(b) for
the streamwise polarization at the walls, we find that Vy < 0, and that |Vy| first
increases nearly linearly with Pef in agreement with the predictions of § 4.1. This
increase persists up to Pef ≈ 10, beyond which |Vy| starts decreasing again. Excellent
quantitative agreement is found with (4.14) for Pef . 2.0. This is confirmed in
figure 10(b), showing the dependence of |Vy|/Pef on swimming Péclet number:
the upstream velocity is found to increase with Pes, primarily as a result of the
corresponding increase in swimming speed of individual particles, and a collapse of
all the curves onto the theoretical prediction of (4.14) is observed when Pef . 2.0.

As seen in figure 7(a), shear trapping and centreline depletion are observed in the
central portion of the channel at high flow Péclet number if Pes is sufficiently low.
This is illustrated more clearly in figure 11, where concentration and wall-normal
polarization profiles are shown in the central portion of the channel for various values
of the flow Péclet number and for Pes = 0.125. This value was chosen to match the
experiments of Rusconi et al. (2014), where the following parameters were reported:
Vs = 50 µm, dr = 1 s−1 and 2H = 400 µm. As seen in figure 11(a), increasing
Pef from zero first results in a decrease in the concentration at the centreline,
corresponding to the formation of the depletion layer. As the concentration decreases,
the width of the depletion layer is also found to decrease. This trend continues up to
Pef ≈ 20, above which the concentration at the centreline starts increasing again, even
though the depletion layer keeps narrowing. These trends are in very good agreement
with the experiments of Rusconi et al. (2014), who also reported a non-monotonic
dependence of the strength of depletion on shear rate; in fact, the profiles shown in
figure 11 are very similar to the experimental profiles at equivalent values of Pef .
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FIGURE 11. (Colour online) (a) Concentration profiles in the central portion of the
channel for Pes = 0.125 and various values of the flow Péclet number Pef , obtained
by finite-volume solution of (2.13). (b) Corresponding profiles of the wall-normal
polarization mz.
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FIGURE 12. (Colour online) (a) Depletion layer thickness δD, defined as the distance from
the centreline where the wall-normal polarization reaches its maximum, as a function of√
χ =√Pes/Pef . (b) Depletion index AD defined in (4.21) as a function of Γ =√PesPef .

The trends in the concentration profile are easily understood based on figure 11(b)
for the wall-normal polarization, which reflects the net swimming velocity across the
channel and provides insight into cross-streamline migration. Indeed, the polarization
profiles exhibit peaks on both sides of the depletion layer, corresponding to a strong
migration away from the centre. These peaks increase in magnitude and also shift
towards the centreline as flow strength increases and the depletion layer narrows.
Beyond those peaks, mz quickly decays to zero where the concentration profiles
plateau in accordance with (2.28) and shear trapping of the particles takes place.

These trends are tested more quantitatively against the strong-flow scaling analysis
of § 4.2 in figure 12. We first define the thickness δD of the depletion layer as the
distance from the centreline where mz reaches its maximum, when such a maximum
exists. Based on the analysis of § 4.2, we expect δD to scale linearly with

√
χ =√

Pes/Pef in strong flows, and this is indeed confirmed in figure 12(a). We find that
δD can only be defined when

√
χ . 0.16 or Pef & 40Pes, which corresponds to the

shear-trapping regime. Best agreement with the scaling prediction is obtained in the
low-Pes and high-Pef limit, and a linear least-squares fit to the data for Pes 6 0.25
and Pef > 50 shows that δD≈ 2.404

√
χ . As Pes increases, the numerical results depart

from this prediction, primarily due to the thickening of the wall boundary layers,
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FIGURE 13. Schematic summary of the dynamics in the limits of Pes� 1 and Pef � 1.
The channel can be roughly divided into three regions: (A) near the walls, particles
accumulate in a boundary layer of thickness δ ∼ ΛPes; (B) away from the walls and
centreline, strong nematic alignment by the flow leads to shear trapping and a nearly
uniform concentration profile; (C) near the centreline, particle propulsion leads to a
depletion layer of thickness δD∼Γ . Only the left half of the channel z∈ [−1, 0] is shown;
the corresponding other half can be obtained by symmetry and by noting that mz is an
even function of z, whereas my and Dyz are both odd functions.

which causes them to interact with the parts of the channel where shear trapping and
depletion occur. We further quantify the shape of the depletion layer by introducing
a depletion index AD measuring the amount of particles depleted from the centre due
to trapping in high-shear regions:

AD =
∫ δD

0
c(z) dz− δDc(δD). (4.21)

As we argued in § 4.2 based on (4.20), the shape of the depletion layer is expected to
depend upon Γ =√PesPef , and indeed the numerical data for the depletion index for
various values of Pes and Pef are found to collapse onto a master curve when plotted
versus Γ in figure 12(b). In agreement with the trends observed in figure 11(a), the
depletion index shows a non-monotonic dependence on Γ , with maximum depletion
occurring for Γ ≈ 2.

The dynamics in the limits of Pes� 1 and Pef � 1 are summarized schematically
in figure 13, where the channel can be roughly divided into three distinct regions.
Region (A), with thickness δ ∼ΛPes, abuts the channel wall and is characterized by
wall accumulation and a net polarization towards the wall. These effects occur even
in the absence of flow, and are in fact mitigated by the flow, which tends to decrease
the wall concentration and rotate particles to induce upstream polarization. Away from
both the wall and the channel centreline is region (B), where the concentration profile
is nearly uniform and shear trapping occurs. Here, polarization is weak but there is a
strong nematic alignment of the particles due to the applied shear. The local shear rate
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decreases in magnitude as we approach the centreline and enter region (C), which has
a characteristic thickness of δD ∼

√
Pes/Pef . In this last region, particles are depleted

due to a net polarization towards the walls, which drives migration away from the
centre but is counterbalanced by translational diffusion. Increasing Pes causes both
regions (A) and (C) to widen, up to a point where they merge and the three regions
can no longer be distinguished. Increasing Pef , on the other hand, tends to weaken
wall accumulation but does not change the thickness of region (A), while it also
causes the narrowing of region (C).

5. Discussion
5.1. Summary of main results

We have used a combination of theory and numerical simulations to analyse the
distributions and transport properties of an infinitely dilute suspension of self-propelled
particles confined between two parallel flat plates, both in quiescent conditions and
under an imposed pressure-driven flow. Our analysis focused on incorporating the
effects of confinement within the kinetic theory framework previously developed
by Saintillan & Shelley (2008a), which is based on a Smoluchowski equation for
the distribution of the active particle positions and orientations. In particular, we
demonstrated that prescribing a zero-normal-flux condition on the particle distribution
function at the boundaries captures several key features reported in experiments on
dilute active suspensions under confinement. We presented a finite-volume algorithm
for the numerical solution of the Smoluchowski equation, which allows for an easy
implementation of the boundary conditions, and also developed a simpler system of
equations for the orientational moments of the distribution function, which enabled us
to perform analytical calculations in the absence of flow and under a weak imposed
flow. An asymptotic scaling analysis was also performed on the full Smoluchowski
equation under strong flow. The numerical simulation data were used to test and
further understand the analytical calculations and predictions.

We first considered the dynamics in the absence of flow. In this case, the governing
equations involve a swimming Péclet number Pes, which is the ratio of the persistence
length of swimmer trajectories to the channel height, as well as a parameter Λ that
is fixed for a given swimmer type and whose inverse measures the strength of
propulsion. In the limit of wide channels, the channel can be divided into two
regions: a near-wall accumulation region where the particles tend to concentrate and
have a net polarization towards the wall, and a bulk region away from the walls
where the distribution is nearly uniform and isotropic. Asymptotic expressions for
the full distribution function were also derived as series in powers of Λ in the
weak and strong propulsion limits. In particular, it was shown that the characteristic
thickness of the accumulation layer scales with dt/Vs in the strong propulsion limit
(Λ� 1), and with

√
dt/dr in the weak propulsion limit (Λ� 1). For finite values

of Λ, analytical expressions for the concentration and polarization profiles were
obtained by solving the moment equations and displayed excellent agreement with
the finite-volume numerical simulation of the full distribution function for a wide
range of values of the swimming Péclet number so long as Λ& 0.1. Based on these
results, we proposed and validated a simple mechanism for wall accumulation, where
the presence of the wall breaks the polar symmetry of the active particles and leads
to sorting of orientations. This mechanism differs from previous explanations based
on hydrodynamic interactions or surface alignment due to collisions, and led us to
conclude that both pusher and puller particle suspensions will exhibit similar wall



508 B. Ezhilan and D. Saintillan

accumulation in the dilute limit. Hydrodynamic and surface alignment interactions are,
however, expected to quantitatively affect the profiles in more concentrated systems
and to lead to different distributions for pusher and puller particles.

Next, we analysed the effects of an imposed pressure-driven flow. When a flow
is applied on the suspension, the physics is now governed by three dimensionless
groups: the swimming Péclet number Pes and parameter Λ introduced above, as
well as a flow Péclet number Pef comparing the imposed shear rate to rotational
diffusion. In the weak-flow limit, we calculated the leading-order corrections of the
streamwise polarization and shear nematic alignment due to the flow and showed
that near-wall upstream swimming is a consequence of shear rotation of the particles
inside the accumulation layer near the walls. We derived an analytical expression for
the average upstream swimming velocity of the active particles relative to the imposed
flow, which was compared against numerical simulations and provides an excellent
estimate for Pef . 2. In the strong-flow limit, we developed a scaling analysis to
show that when Pes� 1 and Pef � 1 the channel can be roughly divided into three
regions: the near-wall accumulation region with thickness δ∼ΛPes, a depletion region
near the centreline with thickness δD ∼ Γ =

√
Pes/Pef , and a shear-trapping region

away from the wall and centreline where the concentration is nearly uniform and
particle alignment is primarily nematic. The extent of the central depletion shows a
non-monotonic variation with flow strength, with a maximum depletion occurring at
a critical flow strength such that Γ ∼O(1).

5.2. Discussion and comparison with previous works
The phenomena analysed in this study have received considerable attention in
experiments as well as other models and simulations, so we compare and contrast
them here with these prior works. As mentioned in the introduction, the wall
accumulation predicted by our model in the absence of flow is well known in
experiments on bacterial suspensions, where accumulation layers of ≈1–50 µm are
typically reported (Berke et al. 2008; Li & Tang 2009; Li et al. 2011; Gachelin et al.
2014), with increases in concentration of up to 50 times the bulk density very close
to the wall (Li et al. 2011). Such high concentrations at the walls are consistent
with our numerical results of figure 3, which predict high values of c(±1) in the
strong propulsion limit of Λ� 1 relevant to bacteria. Indeed, a rough estimate for
E. coli provides Λ≈ 0.01, though it is difficult to precisely measure dt in experiments
since long-time mean-square displacements are dominated by Taylor dispersion. This
strong accumulation is also consistently observed in simulations (Hernández-Ortiz
et al. 2005; Nash et al. 2010; Costanzo et al. 2012; Elgeti & Gompper 2013; Li
& Ardekani 2014; Lushi et al. 2014), which also exhibit the preferential alignment
of the swimmers towards the wall that our model predicts. A similar alignment
has also been reported in a few experiments (Drescher et al. 2011; Lushi et al.
2014), though detailed observations of swimming micro-organisms near walls has
also revealed complex scattering dynamics due to the interactions of the flagellar
appendages with the boundaries (Denissenko et al. 2012; Kantsler et al. 2013).
These observations seem to contradict mechanisms purely based on Stokes-dipole
hydrodynamic interactions with the no-slip walls, as these predict reorientation of
the cells parallel to the walls in the case of pushers (Berke et al. 2008). Rather,
they appear to support the prediction that accumulation layers derive predominantly
from a polarity-sorting mechanism across the channel together with a balance of
self-propulsion and diffusion at the walls. We note that this mechanism was also
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proposed in the work of Elgeti & Gompper (2013), who performed simulations of
self-propelled Brownian spheres between two flat plates. Their numerical results
support the trends described in § 3.4 on the effect of confinement as captured by Pes.
Elgeti & Gompper (2013) also wrote down a continuum model that shares similarities
with ours, which they used to analyse the strong propulsion and narrow gap limits.
Their conclusions are in agreement with the discussion of §§ 3.2 and 3.3.

The distributions and dynamics predicted by our theory under imposed flow
also agree with the bulk of prior studies, both experimental and numerical. The
reorientation of near-wall swimmers against the flow leading to upstream swimming
has been reported ubiquitously in many experiments (Hill et al. 2007; Kaya & Koser
2009, 2012; Kantsler et al. 2014) and simulations (Nash et al. 2010; Costanzo et al.
2012; Chilukuri et al. 2014), with several of these studies proposing mechanisms
similar to that described herein, namely the shear rotation of the polarized cells near
the walls. Quite remarkably, the peak in the upstream swimming flux at a critical
flow strength visible in the simulation data of figure 10(a) was also reported in the
experiments of Kantsler et al. (2014).

The dynamics in strong flows in the central part of the channel has only received
little attention in previous studies. Our interest in this problem was sparked by the
recent microfluidic experiments of Rusconi et al. (2014), which were the first to
predict centreline depletion and shear trapping. Our scaling analysis and numerical
results of §§ 4.2 and 4.3 are in excellent agreement with their observations. In
particular, the shape of the concentration profiles near the channel centreline obtained
in figure 11 are quite similar to those shown in figure 2(a) of their paper. Further, we
observed in our study a non-monotonic dependence of the depletion index on Γ , with
maximum depletion occurring for Γ ≈ 2. In the experiments of Rusconi et al. (2014),
a similar non-monotonic trend was reported, with the strongest depletion occurring in
the range of γ ≈ 2.5–10 s−1. From their data, we estimate Pef ≈ 5–20 and Pes≈ 0.125,
from which we find Γ ≈ 0.8–1.6, in reasonable agreement with our numerical results.
A simple analytical model based on a Fokker–Planck equation was also introduced
in their paper, though only limited results were obtained in the low-Pef limit.

Since the experiments of Rusconi et al. (2014), the existence of centreline depletion
in strong flows was also confirmed in the numerical simulations of Chilukuri et al.
(2014), which provided additional insight into the shape of the depletion layer and
its scaling with flow strength. By fitting the dip in concentration at the centreline
with a parabola, they were able to extract the profile curvature from their simulation
data, and showed that it collapses onto a master curve when plotted versus γ̇wH/2Vs,
in agreement with our prediction that the shape of the depletion is controlled by
χ =Pes/Pef =Vs/2γ̇wH. They also reported similar particle orientations as predicted in
figures 6(a) and 8(a): namely, swimmers are preferentially aligned with the flow in the
bulk of the channel, even though they tend to swim upstream near the walls. Finally,
we recall that our theoretical scaling for the width of the depletion layer is also in
agreement with the analytical model of Zöttl & Stark (2012), which is discussed in
more detail in appendix D and determines the distance away from the centreline where
a deterministic swimmer leaving z= 0 with a given orientation fully aligns with the
flow, i.e. becomes trapped by shear alignment.

5.3. Concluding remarks
The favourable agreement of our predictions with both experiments and simulations
validates our model and in particular our choice of boundary condition. We reiterate
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that particle–particle and particle–wall hydrodynamic interactions were entirely
neglected in this work, suggesting that the salient features of confined active
suspensions such as wall accumulation, upstream swimming, centreline depletion
and shear trapping can all be explained in the absence of such interactions. Yet even
in dilute suspensions, particle–wall hydrodynamic interactions are known play a role
(Spagnolie & Lauga 2012) and are expected to slightly modify the results described
here. Pusher and puller suspensions are no longer equivalent when hydrodynamic
interactions are included and therefore may adopt slightly different distributions,
whereas this distinction is irrelevant in the present model. As particle density increases,
we also expect particle–particle hydrodynamic interactions to become significant, and
to destabilize the equilibrium distributions obtained in § 3 if the concentration is
sufficiently high. A preliminary one-dimensional stability analysis accounting for flow
modification by the particles suggests the existence of a symmetry-breaking bifurcation
above a critical concentration in suspensions of pushers, leading to unidirectional flow
with net fluid pumping; such an instability was also previously predicted using various
phenomenological models for active liquid crystals (Voituriez, Joanny & Prost 2005;
Marenduzzo, Orlandini & Yeomans 2007b; Edwards & Yeomans 2009; Fürthauer et al.
2012; Ravnik & Yeomans 2013). Further increases in concentration may also lead
to the onset of bacterial turbulence (Marenduzzo et al. 2007a; Gachelin et al. 2014).
These predictions have yet to be confirmed from a hydrodynamics first-principles
perspective and may also be investigated computationally using a generalization of
the finite-volume algorithm presented in appendix C, or by numerical solution of
the approximate equations for the orientational moments of the distribution function,
which were shown to be highly accurate in the absence of an external flow. Since the
equilibrium states under confinement are non-uniform and polarized in the wall-normal
direction, the instabilities in confined active suspensions could have multifold origins.

Our study has only focused on the limit of high-aspect-ratio particles whose
orientational dynamics are described by (2.5). If the aspect ratio of the particles is
not high, some of the conclusions of this work may change. The distributions in the
absence of flow, including the formation and structure of the wall accumulation layers,
are not expected to change even in the limit of spherical particles, as confirmed by
previous simulations of Brownian active spheres (Elgeti & Gompper 2013). However,
low-aspect-ratio particles will be subject to a weaker alignment with the local shear
in an imposed flow, which is expected to widen and eventually suppress the centreline
depletion layer in strong flows. This concept may provide interesting avenues for the
sorting of active particles by shape in microfluidic devices.

As a final comment, we recall that a crucial ingredient of our analysis is the
presence of translational diffusion in the dynamics of the swimmers, which acts
to balance the swimming flux at the boundaries and leads to diffuse accumulation
layers. In the limit of strong propulsion or weak diffusion (Λ→ 0), we saw that
accumulation is enhanced, and we expect the formation of concentration singularities
at the walls in the strict limit of dt = 0. This limit is not easily addressed in the
context of our theory, though a very recent attempt at describing accumulation in
this case was proposed by Elgeti & Gompper (2015). The development of a more
detailed framework in the absence of diffusion may prove particularly relevant for
describing the accumulation of fast-swimming bacteria undergoing run-and-tumble
dynamics, notably in applications involving the interaction of bacterial suspensions
with suspended passive objects (Di Leonardo et al. 2010; Sokolov et al. 2010;
Koumakis et al. 2013; Kaiser et al. 2014).
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Appendix A. Comparison between the no-flux and reflection boundary conditions
In this appendix, we compare the no-flux boundary condition of (2.8), which is

central to our model, with the reflection boundary condition used in previous works
(Bearon et al. 2011; Ezhilan et al. 2012). The reflection boundary condition ensures
that

Ψ (±1, θ, φ)=Ψ (±1, π − θ, φ) (A 1)

at the channel walls, where θ and φ are defined in figure 1. Calculating the first three
orientational moments of (A 1) yields the following conditions to be enforced at z=
±1:

dc
dz
= 0, (A 2)

mz = 0,
dmy

dz
= 0, (A 3a,b)

dDzz

dz
= 0,

dDyy

dz
= 0, Dyz = 0. (A 4a−c)

While (A 2)–(A 4) are easily shown to imply that the no-flux conditions (2.25)–(2.27)
on c, my, Dyy and Dzz are also satisfied, they are much more stringent conditions, with
a significant impact on the distribution of particles near the wall.

First, in the absence of flow, we see that (3.4)–(3.6) now need to be solved subject
to boundary conditions (A 2)–(A 4) at z=±1. The uniform and isotropic solution with
c(0)= 1 and m(0)

z =D(0)
zz = 0 satisfies this system exactly. In other words, the condition

of (A 1), by enforcing a zero concentration gradient and wall-normal polarization at
the walls, is unable to capture the concentration/polarization boundary layer, which is
one of the key results predicted by the no-flux boundary condition and is a ubiquitous
feature of experiments and particle models.

The impact of condition (A 1) on distributions under flow can be understood in the
low-Pef limit by modifying the derivation of § 4.1. Since m(0)

z = 0, the right-hand term
in (4.7) now vanishes. Equations (4.7)–(4.8) are then rewritten as

Pes
dD(1)

yz

dz
− 2ΛPe2

s

d2m(1)
y

dz2
+m(1)

y = 0, (A 5)

Pes

5
dm(1)

y

dz
− 2ΛPe2

s

d2D(1)
yz

dz2
+ 3D(1)

yz =
S(z)
10

, (A 6)

subject to the boundary conditions

dm(1)
y

dz
= 0, D(1)

yz = 0 at z=±1. (A 7a,b)

Taking a cross-sectional average of (A 5) subject to (A 7) shows that m(1)
y = 0.

Therefore, the mean upstream velocity in the channel is exactly zero if the reflection
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boundary condition is enforced. The condition also imposes a zero streamwise nematic
alignment (D(1)

yz = 0) at the walls, which is not physical when a fluid flow satisfying
the no-slip boundary condition is imposed. A closer look at (A 6) and (A 7) also
reveals that the system is in fact ill-posed in the limit of Pes→ 0. For finite values
of Pes, a numerical solution shows that the reflection boundary condition severely
underpredicts the near-wall upstream polarization shown in figure 6. Finally, we note
that the analysis presented in § 4.2 in the strong-flow limit (and hence the scalings
for the depletion boundary layer thickness and rationalization of the non-monoticity
of the depletion index with Pef ) describes the dynamics in the bulk of the channel
and is not affected by the boundary condition imposed.

Appendix B. Effect of steric exclusion
The analysis of this paper has entirely neglected the finite size of the active particles

and in particular did not account for steric exclusion with the boundaries, which is
expected to modify the distributions near the walls, as observed experimentally (Takagi
et al. 2014). As previously shown in the case of passive rods (Nitsche & Brenner
1990; Schiek & Shaqfeh 1995; Krochak et al. 2010), excluded-volume interactions
can be incorporated by means of a more complex boundary condition. One must
first realize that steric exclusion prohibits those configurations near either of the two
walls that lead to overlap of a section of a particle with the wall. The boundaries
between such allowed and prohibited configurations define two hypersurfaces in the
three-dimensional (z, θ, φ) space of particle configurations:

z= 1− L∗|cos θ | (top hypersurface), (B 1)
z=−1+ L∗|cos θ | (bottom hypersurface), (B 2)

where L∗ = L/2H is the ratio of the particle length to the channel width. At any
position z inside the channel, this restricts the allowable range of θ to an interval of
the form [θ1(z), θ2(z)], with

θ1(z)=


0 for 1− |z|> L∗,

cos−1

(
1− |z|

L∗

)
for 1− |z|6 L∗,

(B 3)

and

θ2(z)=


π for 1− |z|> L∗,

cos−1

(−1+ |z|
L∗

)
for 1− |z|6 L∗,

(B 4)

and, consequently, any integral with respect to p of a field variable A(z, p) must be
restricted to these configurations:∫

Ω

A(z, p) d p≡
∫ 2π

0

∫ θ2(z)

θ1(z)
A(z, p) sin θ dθ dφ. (B 5)

To ensure that prohibited configurations are never realized, the boundary condition
(2.7) must be replaced by a more general no-flux condition on the hypersurfaces
defined in (B 1) and (B 2). Introduce the generalized flux vector J as

J(z, p, Ψ )= (ẋ+ ṗ) Ψ = Jz ẑ+ Jθ θ̂ + Jφφ̂, (B 6)
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FIGURE 14. (Colour online) Effect of steric exclusion on the steady concentration profile
in the absence of flow and for Pes = 0.25. The plot compares numerical results for three
different values of L∗ = L/2H to the case where steric exclusion is neglected (L∗→ 0).

with

Jz = Pes cos θ Ψ − 2ΛPe2
s
∂Ψ

∂z
, (B 7)

Jθ = 1
2

(
Pef S(z) cos2 θ sin φ Ψ − ∂Ψ

∂θ

)
, (B 8)

Jφ = 1
2

(
Pef S(z) cos θ cos φ Ψ − 1

sin θ
∂Ψ

∂φ

)
. (B 9)

Denoting by n̂(z, θ) the normal unit vector on one of the two hypersurfaces, the
generalized no-flux condition is simply expressed as

n̂(z, θ) · J(z, p, Ψ )= 0, (B 10)

which, upon calculation of the normal n̂, leads to the two conditions:

Jz ∓ L∗ sin θ Jθ = 0 at z= 1− L∗|cos θ |, (B 11)
Jz ± L∗ sin θ Jθ = 0 at z=−1+ L∗|cos θ |. (B 12)

In each case, the upper sign is used when θ ∈ [0, π/2] and the lower one when
θ ∈ [π/2, π]. Numerical solution of the conservation equation (2.6) subject to the
boundary conditions (B 11) and (B 12) can be done using finite volumes as described
in appendix C. Typical results for the concentration profile c(z) in the absence of
flow are shown in figure 14 for different values of L∗ and compared with the solution
obtained previously using the boundary condition (2.7), which corresponds to the limit
of L∗→ 0. When steric exclusion is accounted for, a depletion layer is observed close
to the walls whose thickness is of the order of L∗. Steric exclusion leads to a decrease
in concentration in the near-wall region because it suppresses the orientations aligned
towards the wall and hence the wall-normal polarization. Under stronger confinement
(higher L∗), this leads to a concentration peak at the edge of the depletion layer due
to wall accumulation, and this peak increases in magnitude and shifts closer to the
wall as L∗ decreases. For very small values of L∗, the concentration profile approaches
the profile obtained by neglecting steric effects, and steric exclusion can be safely
neglected outside of the depletion layer itself whenever L∗ . 0.01. This is indeed the
appropriate regime in most microfluidic experiments with bacterial suspensions, which
justifies the use of the simpler boundary condition (2.7) in the work presented here.
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Appendix C. Finite-volume numerical algorithm
In this appendix, we describe the algorithm used for the numerical solution of (2.13)

for the distribution function. The method is based on a finite-volume discretization
of the Smoluchowski equation (Ferziger & Perić 2002), which has the advantage of
satisfying conservation locally to machine precision while also allowing for an easy
implementation of no-flux boundary conditions such as (2.7) or (B 11) and (B 12). To
avoid the cost of large matrix inversions, we solve the time-dependent Smoluchowski
equation to steady state using an explicit scheme. In conservative form, the governing
equation can be written as

∂Ψ

∂t
+∇J · J = 0, (C 1)

where J is the generalized flux vector defined in (B 6)–(B 9), and ∇J is the gradient
operator in the three-dimensional (z, θ, φ) space of particle configurations:

∇J ≡ ∂

∂z
ẑ+ ∂

∂θ
θ̂ + 1

sin θ
∂

∂φ
φ̂. (C 2)

We note that Ψ (z, θ, φ) is defined on a hypervolume obtained by extruding the
unit sphere in the z dimension. This computational domain is discretized into finite
volumes using a uniform grid with respect to (z, r, φ), where r = cos θ . The nodal
points (zi, rj, φk) where Ψ is evaluated are located at the centres of each volume and
have coordinates

zi = 2i− 1
Nz
− 1 for i= 1, . . . ,Nz, (C 3)

rj = 2j− 1
Nr
− 1 for j= 1, . . . ,Nr, (C 4)

φk = 2π(k− 1)
Nφ

for k= 1, . . . ,Nφ, (C 5)

where Nz, Nr and Nφ are the total numbers of points in each direction. We also define
the grid spacing in each direction as

1z= 2
Nz
, 1r= 2

Nr
, 1φ = 2π

Nφ

. (C 6a−c)

The advantage of this discretization (compared to a uniform grid with respect to θ ) is
that it divides the sphere of orientations into elements of equal area, which reduces
restrictions on the time step arising from the rotational flux.

A typical finite volume centred around node (i, j, k) is illustrated in figure 15. It is
delimited by eight grid points denoted A through H, with indices (i±, j±, k±), where
we have introduced the notation i± = i± 0.5, j± = j± 0.5 and k± = k± 0.5. The cell
edges have lengths

AB=DC= EF=HG=1`θ ≡ cos−1(rj−)− cos−1(rj+), (C 7)

AD= EH =1`−φ ≡
2π sin θ j−

Nφ

, BC= FG=1`+φ ≡
2π sin θ j+

Nφ

, (C 8a,b)

AE= BF=DH =CG=1z. (C 9)
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FIGURE 15. Typical finite volume in three-dimensional (z, θ, φ) space, centred around
an arbitrary nodal point with indices (i, j, k). The uniform discretization with respect to
(z, r, φ) ensures that all such computational cells have equal volume 1V =1z1r1φ.

In figure 15, faces ABCD and EFGH have unit normal ẑ and surface area 1r1φ.
Similarly, faces ADHE and BCGF have unit normal θ̂ and areas 1z1`−φ and 1z1`+φ ,
respectively, whereas faces ABFE and DCGH have unit normal φ̂ and area 1z1`θ .
The volume of the computational cell is 1V =1z1r1φ.

In order to satisfy conservation of the distribution function exactly in each finite
volume, we first integrate equation (C 1) over computational cell V(i, j, k):∫∫∫

V(i,j,k)

(
∂Ψ

∂t
+∇J · J

)
dz dr dφ = 0. (C 10)

After applying the divergence theorem to the second term, this can be recast as

0 = ∂

∂t

∫∫∫
V(i,j,k)

Ψ dz dr dφ +
∫∫

ABCD

Jz dr dφ −
∫∫

EFGH

Jz dr dφ

+
∫∫

ADHE

Jθ dz dφ −
∫∫

BCGF

Jθ dz dφ

+
∫∫

ABFE

Jφ dz dr−
∫∫

DCGH

Jφ dz dr. (C 11)
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The volume and surface integrals in (C 11) are approximated to second order using a
midpoint rule. After division by 1V , this leads to the discretized equation:

0 = ∂Ψ i,j,k

∂t
+ 1
1z
[Jz(i+, j, k)− Jz(i−, j, k)]

+ 1
1r
[Jθ(i, j+, k) sin θ j+ − Jθ(i, j−, k) sin θ j−]

+ 1`θ

1r1φ
[Jφ(i, j, k+)− Jφ(i, j, k−)]. (C 12)

In order to integrate this equation, we must first obtain approximate expressions for
the fluxes at the centres of the six volume faces. This is done using linear interpolation
for terms involving Ψ , and centred finite differences for terms involving derivatives of
Ψ . In the z and φ directions, this gives

Jz(i+, j, k)≈ Pes cos θ j

(
Ψ i+1,j,k +Ψ i,j,k

2

)
− 2ΛPe2

s

(
Ψ i+1,j,k −Ψ i,j,k

1z

)
, (C 13)

Jφ(i, j, k+) ≈ 1
2

[
Pef S(zi) cos θ j cos φk+

(
Ψ i,j,k+1 +Ψ i,j,k

2

)
− 1

sin θ j

(
Ψ i,j,k+1 −Ψ i,j,k

1φ

)]
, (C 14)

with similar expressions for Jz(i−, j, k) and Jφ(i, j, k−). The approximation of Jθ is
slightly more involved owing to the non-uniformity of the mesh with respect to θ .
Derivatives with respect to θ are calculated using symmetric central finite differences
in terms of r after application of the chain rule, and linear interpolation is used with
respect to the θ variable, leading to the approximation

Jθ(i, j+, k) ≈ 1
2

{
Pef S(zi) cos θ j+ cos φk[λj+Ψ i,j+1,k + (1− λj+)Ψ i,j,k]

+ sin θ j+
(
Ψ i,j+1,k −Ψ i,j−1,k

1r

)}
, (C 15)

with a similar expression for Jθ(i, j−, k). The interpolation weight λj+ is given by

λj+ =
cos−1

(
rj + 1r

2

)
− cos−1(rj)

cos−1(rj +1r)− cos−1(rj)
. (C 16)

When integrating (C 12) in time, care must be taken when dealing with cells adjacent
to the poles of the unit sphere (j= 1 and Nr), as these cells are missing one face. For
instance, cells with j= 1 are such that A=D and E=H in the diagram of figure 15,
so that face ADHE is missing and the corresponding flux should not be included in
the discretized equation.

Boundary conditions also need to be specified to proceed with the time integration.
Periodic boundary conditions are used in the φ direction, yielding

Jφ(1/2, j, k)= Jφ(Nφ − 1/2, j, k) and Jφ(Nφ + 1/2, j, k)= Jφ(3/2, j, k). (C 17a,b)

Treatment of the boundaries in the θ and z directions differs depending on whether
steric exclusion with the walls is included or not.
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C.1. Without steric exclusion
When steric exclusion is not included and the simple boundary condition of (2.7) is
used, θ varies over its full range [0, π]. However, no boundary condition is needed
along θ as the boundary cells with j= 1 and Nr are missing one face, as explained
above, which eliminates the need to specify Jθ(i, 1/2, k) and Jφ(i,Nr + 1/2, k). Along
the z direction, the boundary condition is simply the no-flux condition (2.7), which
translates into

Jz(i, j, 1/2)= Jz(i, j,Nz + 1/2)= 0. (C 18)

C.2. With steric exclusion
The situation is more complex when steric exclusion is accounted for, as the boundary
conditions need to be enforced on the hypersurfaces defined in (B 1) and (B 2). It is
convenient in this case to choose Nz and Nr such that

1z= L∗1r or Nz = Nr

L∗
. (C 19a,b)

Indeed, this ensures that the hypersurfaces fall onto grid points and eliminates the
need for further interpolation. However, if L∗ is small, this implies that a significantly
finer resolution is needed along z than along θ . As we discussed in appendix A, the
hypersurfaces limit the range of allowable values of θ to an interval of the form
[θ1(z), θ2(z)] ⊂ [0, π] for particles located near the walls. After discretization of the
domain and choosing Nz and Nr to satisfy condition (C 19), we find that, for any nodal
point with coordinate zi, there is a finite range [θ j1(i), θ j2(i)] of allowable values of θ j,
with

j1(i)=


Nr

2
+ 1− i if z 6−1+ L∗,

Nr

2
−Nz + i if z > 1− L∗,

1 otherwise,

(C 20)

j2(i)=


Nr

2
+ i if z 6−1+ L∗,

Nr

2
+Nz + 1− i if z > 1− L∗,

Nr otherwise.

(C 21)

Interior nodal points such that j ∈ [j1(i) + 1, j2(i) − 1] are such that full cuboidal
finite volumes in (z, r, φ) can be constructed around them, and therefore do not
require any special boundary treatment. Boundary nodal points such that j = j1(i)
or j2(i), however, are contained inside prisms whose hypotenuses coincide with
the hypersurfaces. These finite volumes can be treated in the same way as interior
control volumes by prescribing zero-flux contributions from surfaces lying outside of
the domain, by multiplying the volume 1V by 0.5, and by adjusting the surface area
of faces ABFE and DCGH to a reduced triangular area given by

1A= 1z1lθ
2
+
[

rj1lθ − 2 sin
(
1lθ
2

)
cos
(
θ j+ + θ j−

2

)]
. (C 22)
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Appendix D. Active particle trajectories and shear trapping
In this appendix, we rationalize the linear dependence of the depletion layer

thickness δD upon Pes/Pef by deriving the trajectory of a deterministic swimmer
whose dynamics results from self-propulsion and shear rotation via Jeffery’s equation.
A similar derivation was previously presented by Zöttl & Stark (2012, 2013). In
dimensional variables, the equations of motion of the swimmer are

ż(t)= Vs cos θ(t), (D 1)
ṗ(t)= (I − pp) · (ζE +W ) · p. (D 2)

Here, ζ is a shape parameter, with ζ ≈ 1 for a slender particle, as we have assumed
in the rest of the paper. The two second-order tensors E and W are the rate-of-strain
and vorticity tensors of the imposed flow, respectively:

E = γ̇w

2
z(t)

(
ŷẑ+ ẑ ŷ

)
, W = γ̇w

2
z(t)

(
ŷẑ− ẑ ŷ

)
. (D 3a,b)

Parametrizing the orientation vector as p= (sin θ cos φ, sin θ sin φ, cos θ), we can use
(D 2) to obtain expressions for the time rates of change of the polar and azimuthal
angles of the swimmer as

θ̇ (t)= γ̇w

2
z(t)sin φ(t)[(ζ + 1) cos2 θ(t)− (ζ − 1) sin2 θ(t)], (D 4)

φ̇(t)= γ̇w

2
z(t)(ζ + 1)

cos θ(t)cos φ(t)
sin θ(t)

. (D 5)

Equations (D 1), (D 4) and (D 5) form a closed system of coupled ordinary differential
equations that can be solved for the swimmer dynamics.

Any swimmer that is not perfectly aligned with the walls (cos θ 6= 0) will tend to
migrate towards one of the boundaries due to self-propulsion, while shear rotation
tends to align it along the flow direction, causing it to get trapped. Recalling the
definition of χ as the ratio of the time scale for shear rotation to the time it takes for
a swimmer to cross the channel,

χ = Vs

2γ̇wH
= Pes

Pef
, (D 6)

we expect two different regimes. When χ � 1, any swimmer released from the
centreline with initial orientation (θ0, φ0) will reach one of the walls before becoming
trapped. On the other hand, when χ � 1, we expect there to exist a position
ztrap(θ0, φ0) inside the channel where the swimmer gets trapped due to shear alignment.
This indeed corresponds to the regime discussed in § 4.2, where depletion from the
centreline and shear trapping were predicted to occur for Pes� 1 and Pef � 1.

To derive a quantitative estimate for ztrap, we calculate the value of z at which θ first
reaches ±π/2. We first consider the case of a particle with initial position z0= 0 and
orientation defined by θ0 ∈ [0,π/2), φ0 = 3π/2. For this specific initial configuration,
φ̇(0) = 0, which implies φ(t) = 3π/2 for all times. The motion is two-dimensional
in this case, and the dynamics is governed by the two coupled ordinary differential
equations

ż(t)= Vs cos θ(t), (D 7)
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θ̇ (t)=− γ̇w

2
z(t)[(ζ + 1) cos2 θ(t)− (ζ − 1) sin2 θ(t)]. (D 8)

An equation for the swimmer trajectory can then be obtained by taking the ratio of
(D 7) and (D 8):

dθ
dz
= z

H

[
(ζ + 1)− 2(ζ − 1) sin2 θ(t)

2χ cos θ

]
. (D 9)

This can be integrated from (z, θ)= (0, θ0) to (ztrap,π/2), yielding(
ztrap(θ0)

H

)2

= χ
√

1
2ζ (ζ + 1)

(
tanh−1

√
2ζ
ζ + 1

− tanh−1

√
2ζ
ζ + 1

sin θ0

)
. (D 10)

For a typical swimmer of aspect ratio 10, we estimate ζ ≈ 0.98. Taking the initial
configuration to be θ0=0, equation (D 10) simplifies to ztrap/H≈√3χ ≈1.73

√
Pes/Pef .

This estimate is consistent with the high-Pef scaling analysis of § 4.2, as well as with
the numerical results of § 4.3, where we found δD ≈ 2.404

√
Pes/Pef .

The more general case of an arbitrary initial orientation (θ0, φ0) can also be solved
analytically. Combining (D 4) and (D 5) to eliminate z(t), we find after integration:

cos φ = cos φ0

∣∣∣∣ (ζ + 1)cosec2θ − 2ζ
(ζ + 1)cosec2θ0 − 2ζ

∣∣∣∣1/2 . (D 11)

Now, using (D 1) and (D 4), we get(
ztrap(φ0, θ0)

H

)2

= 2χ
∫ π/2

θ0

cos θ

(ζ + 1− 2 ζ sin2 θ)
√

1− cos2 φ
dθ, (D 12)

where sinφ is known in terms of θ using (D 11). This expression confirms the scaling
of ztrap with

√
χ , and it can in fact be shown that ztrap in (D 12) has an upper bound

given by the previous estimate (D 10).
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