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The deformation of a viscous liquid droplet suspended in another liquid and subject
to an applied electric field is a classic multiphase flow problem best described by the
Melcher–Taylor leaky dielectric model. The main assumption of the model is that any
net charge in the system is concentrated on the interface between the two liquids as
a result of the jump in Ohmic currents from the bulk. Upon application of the field,
the drop can either attain a steady prolate or oblate shape with toroidal circulating
flows both inside and outside arising from tangential stresses on the interface due
to action of the field on the surface charge distribution. Since the pioneering work
of Taylor (Proc. R. Soc. Lond. A, vol. 291, 1966, pp. 159–166), there have been
numerous computational and theoretical studies to predict the deformations measured
in experiments. Most existing theoretical models, however, have either neglected
transient charge relaxation or nonlinear charge convection by the interfacial flow.
In this work, we develop a novel small-deformation theory accurate to second
order in electric capillary number O(Ca2

E) for the complete Melcher–Taylor model
that includes transient charge relaxation, charge convection by the flow, as well as
transient shape deformation. The main result of the paper is the derivation of coupled
evolution equations for the induced electric multipoles and for the shape functions
describing the deformations on the basis of spherical harmonics. Our results, which are
consistent with previous models in the appropriate limits, show excellent agreement
with fully nonlinear numerical simulations based on an axisymmetric boundary
element formulation and with existing experimental data in the small-deformation
regime.
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1. Introduction
Electric fields, when applied to weakly conducting dielectric liquids, can give rise to

fluid motions, the study of which forms the field of electrohydrodynamics (Melcher &
Taylor 1969; Saville 1997). In contrast with aqueous electrolytes, ion dissociation in
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the presence of electric fields is typically negligible in dielectric liquids, so that diffuse
Debye layers are absent and fluid motions instead result from the coupling of electric
and hydrodynamic stresses acting on interfaces. Electrohydrodynamic phenomena find
widespread industrial applications, such as inkjet printing (Park et al. 2007; Basaran,
Gao & Bhat 2013), electrospraying and atomization of liquids (Taylor 1964, 1969;
Castellanos 2014), solvent extraction (Scott 1989), electrohydrodynamic pumps (Laser
& Santiago 2004), and fibre electrospinning (Huang et al. 2003), among others.

We focus here on the simple problem of electrohydrodynamic deformations of
an uncharged leaky dielectric drop suspended in an infinite weakly conducting fluid
medium and subject to a steady uniform electric field. This problem, first studied
by Wilson & Taylor (1925), was originally analysed under the premise that normal
electric stresses acting on an uncharged interface are responsible for deformations
(O’Konski & Thacher 1953; Harris & O’Konski 1957). Normal stresses, however, can
only result in prolate deformations, while experiments have been known to show both
prolate and oblate shapes depending on material properties (Allan & Mason 1962).
This paradox was resolved in the pioneering work of Taylor (1966), who recognized
that dielectric liquids, while poor conductors, still carry some free charges, which
upon application of the field accumulate at the liquid–liquid interface in the form
of a surface charge distribution due to the mismatch in electrical properties. Taylor
realized that the existence of this surface charge can then give rise to tangential
stresses that drive circulatory toroidal currents inside the drop, now known as Taylor
vortices. Taylor’s theory was able to predict both oblate and prolate shapes, and
showed good agreement with experiments in weak fields.

Having discovered the importance of surface charge and its contribution to
tangential stresses on the interface, Melcher & Taylor (1969) developed a complete
framework for studying the electrohydrodynamics of leaky dielectric drops. The
central result of their model is a surface charge conservation equation that prescribes
a balance between transient charge relaxation, the jump in normal Ohmic currents
arising from the weak but finite conductivities of the two media, and charge
convection on the drop surface by the interfacial fluid velocity. The original model
of Taylor (1966), however, neglected transient effects and charge convection, and
only accounted for first-order deformations in the limit of vanishing electric capillary
number CaE, which compares the magnitude of electric stresses to surface tension.
As a result, agreement with experiments was limited to very small deformations, and
a number of more detailed theories have been proposed over the years to improve
upon this. First, Ajayi (1978) extended Taylor’s theory by retaining terms to second
order in capillary number, but also neglected transients and charge convection. His
results, quite surprisingly, showed worse agreement with experiments than the simpler
model of Taylor in the case of oblate drops, which is a consequence of the latter
approximation.

Including charge convection, however, is quite challenging as it couples the charge
distribution to the resulting fluid flow in a nonlinear fashion. A few computational
studies considered its effects (Feng 1999; Supeene, Koch & Bhattacharjee 2008;
López-Herrera, Popinet & Herrada 2011; Lanauze, Walker & Khair 2015) and
showed that convection tends to increase deformation in the case of prolate drops,
but decrease it for oblate drops. The complete Melcher–Taylor model was also
used in finite-element simulations to study the closely related phenomenon of
electrohydrodynamic tip streaming and disintegration of electrified drops (Collins
et al. 2008, 2013). On the theoretical side, Shutov (2002) and Shkadov & Shutov
(2002) attempted to include charge convection in a small-deformation theory; however,
these authors neglected it at first order and only included it at second order, which
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Nonlinear small-deformation theory for droplet electrohydrodynamics 227

as we will show below is incorrect. Very recently, Bandopadhyay et al. (2016)
studied the dynamics of a drop sedimenting under gravity while subject to an electric
field, using double asymptotic expansions in electric capillary number CaE and
electric Reynolds number ReE, which compares electric to viscous stresses. Their
theory included linearized charge convection and was limited to small ReE; the same
problem was also studied by Yariv & Almog (2016) for arbitrary electric Reynolds
numbers. The limit of large ReE was recently addressed by Yariv & Frankel (2016)
in the case of a nearly spherical drop, where it was found that the axisymmetric
solution ceases to exist in that limit, and instead gives way to electrorotation.

Transient dynamics were also addressed in a few models by including temporal
derivatives of shape modes, first by Moriya, Adachi & Kotaka (1986) for perfectly
conducting drops, followed by Esmaeeli & Sharifi (2011) for weakly conducting
drops. The latter theory predicted a monotonic drop deformation leading to the steady
drop shape predicted by Taylor (1966). Yet, both experiments (Lanauze et al. 2015)
and numerical simulations (Haywood, Renksizbulut & Raithby 1991; Supeene et al.
2008) show non-monotonic deformations in cases leading to steady oblate shapes,
suggesting an inconsistency in the model. This discrepancy was recently resolved by
Lanauze, Walker & Khair (2013), who showed, using a small-deformation theory, that
either transient charge relaxation or fluid acceleration, combined with transient shape
deformations, needs to be included in the model to capture the correct behaviour.

In this work, we present an extension to previous small-deformation theories
valid to order O(Ca2

E) that captures unsteady dynamics. The novelty of our model
lies in the theoretical formulation for the complete Melcher–Taylor leaky dielectric
model, in which we include transient shape deformation, transient charge relaxation
and nonlinear charge convection. As we demonstrate by comparison with boundary
element simulations and existing experiments, including both transient phenomena is
critical in order to capture the correct shape evolution, and accounting for charge
convection leads to improved accuracy in the model predictions as the electric
field strength increases. We present the governing equations in § 2. Details of the
asymptotic theory are provided in § 3 and summarized in § 4, and results of the theory
are discussed in §5, where we compare them to experiments as well as boundary
element simulations based on an algorithm outlined in appendix C. We conclude and
discuss potential extensions of this work in § 6.

2. Problem formulation

We analyse the deformation of a neutrally buoyant liquid drop suspended in another
liquid and subject to a uniform electric field E0 = E0êz, as shown in figure 1. The
drop, with undeformed radius a, is assumed to carry no net charge. Both liquids
are Newtonian and are treated as leaky dielectrics with constant material properties.
The dielectric permittivity, electric conductivity, and dynamic viscosity of the carrying
liquid are denoted by (ε, σ , µ), respectively, whereas those of the drop are denoted
by (ε̄, σ̄ , µ̄). The interface S between the two liquids has uniform surface tension γ
and outward unit normal n.

Following the Melcher–Taylor leaky dielectric model (Melcher & Taylor 1969), we
assume that any net charge in the system is concentrated at the interface between the
two liquids. Under this condition, the electric potentials ϕ and ϕ̄ outside and inside
the drop both satisfy Laplace’s equation:

∇2ϕ = 0, ∇2ϕ̄ = 0. (2.1a,b)
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(a) (b)
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FIGURE 1. (Colour online) Problem definition: a liquid drop is placed in a uniform
electric field E0. (a) Spherical coordinates (r, θ) used in axisymmetric geometry.
Streamlines show the direction of the flow at steady state in the case of an oblately
deformed drop. (b) Drop shape expanded on the basis of spherical harmonics. The full line
corresponds to the spherical shape, while the dashed line and dash-dotted line correspond
to second-order L2 and fourth-order L4 deformation modes, respectively.

The potential is continuous across the interface:

ϕ(x)= ϕ̄(x) for x ∈ S, (2.2)

and approaches the externally applied potential far away from the drop:

ϕ(x)→ ϕe(x)=−E0 · x as |x|→∞. (2.3)

Due to the mismatch in material properties, a surface charge density q(x) develops at
the interface between the two liquids as the drop polarizes, and is given by Gauss’s
law:

q(x)= n · JεE(x)K= εEn(x)− ε̄Ēn(x), (2.4)

where E=−∇ϕ is the local electric field and En = n · E its normal component. The
charge density q evolves due to two distinct mechanisms: Ohmic currents j=σE from
the bulk, and surface charge convection by the fluid flow with velocity v along the
interface. Accordingly, it satisfies the conservation equation

∂tq+ n · J jK+∇s · (qv)= 0, (2.5)

where ∇s ≡ (I − nn) · ∇ is the surface gradient operator. The flow velocity, which
is driven by electric stresses on the interface, satisfies the Stokes equations in both
liquids:

−µ∇2v +∇pH = 0, ∇ · v = 0, (2.6a)
−µ̄∇2v̄ +∇p̄H = 0, ∇ · v̄ = 0, (2.6b)

and is continuous across the interface. Here, pH denotes the hydrodynamic pressure in
the fluid. In the absence of Marangoni effects, the jumps in electric and hydrodynamic
tractions balance interfacial tension forces:

J f EK+ J f HK= γ (∇s · n)n for x ∈ S, (2.7)
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Nonlinear small-deformation theory for droplet electrohydrodynamics 229

where ∇s · n is the total surface curvature. The jumps in tractions are expressed in
terms of the Maxwell stress tensor T E and hydrodynamic stress tensor T H as

J f EK = n · JT EK= n · Jε(EE− 1
2 E2I)K, (2.8a)

J f HK = n · JT HK= n · J−pH I +µ (∇v +∇vT
)
K. (2.8b)

The jump in electric tractions can be further simplified as

J f EK = [εEn − ε̄Ēn]Et + 1
2 [ε(En2 − Et2)− ε̄(Ēn2 − Et2)]n

= qEt + J pEKn. (2.9)

Here, Et = (I − nn) · E is the tangential electric field, which is continuous across the
interface. The first term on the right-hand side captures the tangential electric force
arising from the action of the tangential field on the interfacial charge. The second
term captures normal electric stresses and can be interpreted as a jump in an electric
pressure pE (Lac & Homsy 2007).

In the remainder of the paper, we scale all lengths by the radius a and times by
the Maxwell–Wagner relaxation time τMW , which is the characteristic time scale for
polarization of the drop:

τMW = ε̄ + 2ε
σ̄ + 2σ

. (2.10)

Electric and hydrodynamic stresses are non-dimensionalized by εE2
0 and µ/τMW ,

respectively. Upon scaling of the governing equations, five dimensionless parameters
emerge, three of which are ratios of material properties:

Q= ε̄
ε
, R= σ

σ̄
, λ= µ̄

µ
. (2.11a−c)

The product RQ, which sets the type of deformation and direction of the flow at steady
state (Lac & Homsy 2007), can also be interpreted as the ratio of the inner and outer
charge relaxation times:

RQ= τ̄
τ

where τ = ε

σ
, τ̄ = ε̄

σ̄
. (2.12)

The two remaining dimensionless parameters are chosen as the electric capillary
number CaE, denoting the ratio of electric to capillary forces, and the Mason number
Ma, denoting the ratio of viscous to electric stresses:

CaE = aεE2
0

γ
, Ma= µ

ετMWE2
0
. (2.13a,b)

The Mason number is directly related to the electric Reynolds number ReE (Melcher
& Taylor 1969; Salipante & Vlahovska 2010; Lanauze et al. 2015) as:

ReE = 1
Ma

1+ 2R
R(Q+ 2)

. (2.14)

It is instructive to note that the definition of the Mason number is based on the
suspending fluid viscosity. In most cases the strength of charge convection is inversely
proportional to the Mason number; however, for drop–fluid systems with high viscosity
ratios (λ� 1), the strength of charge convection can be weak even for small values
of Ma.
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3. Problem solution by domain perturbation
We solve the governing equations for axisymmetric shapes in the limit of small

deformations (Taylor 1966; Ajayi 1978; Rallison 1984), which occurs when surface
tension is strong enough to overcome deformations due to electric stresses. This
corresponds to the limit of CaE → 0, and allows us to use an asymptotic approach
in which we expand the drop deformation about the spherical shape and all the field
variables in a small shape parameter δ, whose relation with CaE we explain later.
We employ the domain perturbation technique pioneered by Joseph (1967), which
was also used in a number of previous models for the dynamics of charged drops
(Tsamopoulos, Akylas & Brown 1985; Pelekasis, Tsamopoulos & Manolis 1990).

3.1. Shape parametrization and expansion
In axisymmetric geometry, we parametrize the drop shape as a curve ξ(r, η) = 0,
where r= |x| is the distance from the drop centre and η= cos θ is the cosine of the
polar angle θ ∈ [0, π] measured from the field direction. For small deviations from
sphericity, the drop shape is expanded on the basis of spherical harmonics as

ξ(r, η)= r− (1+ δf1 + δ2f2)+O(δ3). (3.1)

The first- and second-order shape functions are linear combinations of Legendre
polynomials Ln of order n:

f1 = f12L2(η), (3.2a)
f2 = f20 + f22L2(η)+ f24L4(η), (3.2b)

where the deformations corresponding to L2 and L4 are illustrated in figure 1(b). We
note the orthogonality condition∫ π

0
Li(η)Lj(η) sin θ dθ = 2

2i+ 1
δij, (3.3)

where δij denotes the Kronecker delta, which will become useful later. The choice
of Legendre functions in (3.2a)–(3.2b) is a consequence of the quadratic nature of
the Maxwell electric stresses acting on the fluid–drop interface, which in a uniform
electric field only excite shape modes of order 2n (n ∈ Z+). In (3.2a)–(3.2b) and in
the rest of the paper, pairs of indices in coefficients of the form fij refer to the order
i in the small-deformation expansion and to the order j of the Legendre polynomial
they multiply, respectively. In (3.2b), the constant term f20 is added to the second-order
shape function f2 to negate the perturbation in the drop volume due to the first-order
shape function f1:

2π

∫ π

0

∫ r

0
ρ2 sin θ dρ dθ = 4π

3
+ 4πδ2

(
f 2
12

5
+ f20

)
+O(δ3). (3.4)

Requiring terms of order δ2 to vanish, we get f20 =−f 2
12/5. The outward unit normal,

tangent vector and curvature of the interface are also obtained as (Ajayi 1978)

n= êr − δ ∂θ f1 êθ +O(δ2), t= êθ + δ ∂θ f1 êr +O(δ2), (3.5a,b)

∇s · n= 2− δL[ f1] − δ2{L[ f2] − 2f1(L[ f1] − f1)} +O(δ3), (3.5c)

where the differential operator L is defined as L[ f ] = ∂η{(1− η2)∂ηf } + 2f .
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Nonlinear small-deformation theory for droplet electrohydrodynamics 231

Using the above parametrization, the normal and tangential components of any
vector v and second-order tensor T on the drop surface are related to their components
in spherical coordinates by

vn = vr
0 + δ(vr

1 + f1∂rv
r
0 − ∂θ f1v

θ
0 )+O(δ2), (3.6a)

vt = vθ0 + δ(vθ1 + f1∂rv
θ
0 + ∂θ f1v

r
0)+O(δ2), (3.6b)

Tnn = T rr
0 + δ(T rr

1 + f1∂rT rr
0 − 2∂θ f1T rθ

0 )+O(δ2), (3.6c)
Tnt = T rθ

0 + δ[T rθ
1 + f1∂rT rθ

0 + ∂θ f1(T rr
0 − Tθθ0 )] +O(δ2), (3.6d)

where the terms on the right-hand side are to be evaluated at r= 1. These expressions
will be useful below in determining the electric field, fluid velocity and stress
distributions on the drop surface.

3.2. Electric problem
3.2.1. Spherical harmonic expansion

We first present the solution to the electric problem, which consists in solving
(2.1)–(2.3) asymptotically. The electric potential outside and inside the drop can be
expanded in powers of δ as

ϕ = ϕe(r, θ)+ ϕ0(r, θ)+ δϕ1(r, θ)+O(δ2), (3.7a)
ϕ̄ = ϕe(r, θ)+ ϕ̄0(r, θ)+ δϕ̄1(r, θ)+O(δ2), (3.7b)

which automatically satisfies the far-field boundary condition (2.3). We have yet to
enforce continuity of the potential across the interface. To this end, we employ a
domain perturbation approach in which all the boundary conditions are enforced
approximately on the undeformed spherical surface r = 1. The potential on the
interface is first expanded in the neighbourhood of r= 1 using Taylor series:

ϕ = ϕe + ϕ0 + δ
[
ϕ1 + f1∂r(ϕe + ϕ0)

]+O(δ2), (3.8a)

ϕ̄ = ϕ̄e + ϕ̄0 + δ
[
ϕ̄1 + f1∂r(ϕe + ϕ̄0)

]+O(δ2). (3.8b)

Applying continuity (2.2) and matching terms of zeroth and first order in δ provides
two boundary conditions at r= 1:

ϕ0 = ϕ̄0, (3.9a)
ϕ1 + f1∂r(ϕe + ϕ0) = ϕ̄1 + f1∂r(ϕe + ϕ̄0). (3.9b)

The zeroth-order problem, which is identical to the case of a sphere, is easily solved
using decaying and growing spherical harmonics in terms of electric dipoles P01, P̄01:

ϕ0 = P01r−2L1(η), (3.10a)
ϕ̄0 = P̄01rL1(η), (3.10b)

and we require that P̄01=P01 to satisfy (3.9a); solving for P01 will require application
of the charge conservation (2.5) as detailed below. After substitution into (3.9b), we
obtain a new first-order boundary condition:

ϕ1 − ϕ̄1 = 3f1P01L1(η)= 3f12P01L1(η)L2(η)= 3
5 f12P01[2L1(η)+ 3L3(η)]. (3.11)
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The order of the polynomials appearing on the right-hand side suggests representing
the first-order potentials in terms of both dipoles P11, P̄11 and octupoles P13, P̄13:

ϕ1 = P11r−2L1(η)+ P13r−4L3(η), (3.12a)
ϕ̄1 = P̄11rL1(η)+ P̄13r3L3(η), (3.12b)

and application of the boundary condition (3.11) yields the relations

P̄11 = P11 − 6
5 f12P01, P̄13 = P13 − 9

5 f12P01. (3.13a,b)

Having determined the electric potential, we can also obtain asymptotic expressions
for the normal and tangential electric fields En = −n · ∇ϕ and Et = −t · ∇ϕ on the
drop surface. Applying (3.6a), we find

En = En
0 + δEn

1 +O(δ2)= En
01L1(η)+ δ[En

11L1(η)+ En
13L3(η)] +O(δ2), (3.14)

with a similar expansion for Ēn. Finally, the expansion for the tangential electric field,
which is continuous across the interface, is obtained using (3.6b) as

Et = Et
0 + δEt

1 +O(δ2)= Et
00 sin θ + δ[Et

10 + Et
12L2(η)] sin θ +O(δ2). (3.15)

The detailed expressions for the coefficients appearing in (3.14)–(3.15) are provided
in appendix A.

3.2.2. Charge conservation and moment equations
To complete the solution of the electric problem, equations must be derived for

the moments P01, P11 and P13, which are time-dependent. These can be obtained as
ordinary differential equations by application of the charge conservation (2.5). First,
we expand the charge density in powers of δ as

q= q0 + δq1 +O(δ2)= q01L1(η)+ δ[q11L1(η)+ q13L3(η)] +O(δ2). (3.16)

Similarly, we expand the jump in Ohmic currents n · J jK= J jKn, scaled here by σ̄E0,
as

J jKn= J jKn
0+ δJ jKn

1+O(δ2)= J jKn
01L1(η)+ δ{J jKn

11L1(η)+ J jKn
13L3(η)} +O(δ2). (3.17)

Expansion coefficients for both q and J jKn are provided in appendix A. Finally, we
formally expand the charge convection term in (2.5) as

∇s · (qv) = [∇s · (qv)]0 + δ[∇s · (qv)]1 +O(δ2),

= [∇s · (qv)]01L1(η)+ δ{[∇s · (qv)]11L1(η)+ [∇s · (qv)]13L3(η)} +O(δ2),

(3.18)

where we have introduced the Legendre coefficients

[∇s · (qv)]ij = 2j+ 1
2

∫ π

0
[∇s · (qv)]iLj(η) sin θ dθ. (3.19)

Detailed expressions for these coefficients require knowledge of the interfacial velocity
v, whose calculation is presented in § 3.3. Note that the zeroth-order charge convection
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Nonlinear small-deformation theory for droplet electrohydrodynamics 233

term arising from the nonlinear product of the charge density q0 and interfacial
velocity v0 also involves an additional term of the form [∇s · (qv)]03L3(η), which has
been neglected here. To consider its effect, one would need to include a zeroth-order
octupole P03 in (3.10), which in turn would generate charge convection terms of
orders 1, 3, 5, 7, . . . , thus requiring additional higher-order odd multipoles. These
multipoles becomes stronger with increasing electric Reynolds number or decreasing
Mason number. Our theory is therefore valid in the limit of high Mason number,
i.e. for drop–fluid systems in which charge convection is relatively weak.

Substituting the expansions (3.16)–(3.18) into the charge conservation (2.5),
matching powers of δ, and applying orthogonality of Legendre polynomials leads
to a set of relaxation equations for the charge coefficients. In dimensionless form,
these read

q̇ij + Q+ 2
1+ 2R

J jKn
ij + [∇s · (qv)]ij = 0, (3.20)

where the dot in the first term denotes differentiation with respect to time. If we
further express qij and J jKn

ij in terms of P01, P11 and P13 using (A 2) and (A 3),
we arrive at a set of hierarchical differential equations for the dipole and octupole
moments:

Ṗ01 + P01 = 1− R
1+ 2R

− 1
Q+ 2

[∇s · (qv)]01, (3.21)

Ṗ11 + P11 = d
dt

[
6
5

f12

(
P01

1+ 2Q
2+Q

+ 1−Q
2+Q

)]
+ 6

5
f12

(
P01

R+ 2
2R+ 1

− 1− R
2R+ 1

)
− 1

Q+ 2
[∇s · (qv)]11, (3.22)

Ṗ13 + Q+ 2
3Q+ 4

4R+ 3
2R+ 1

P13 = d
dt

[
6
5

f12

(
P01

8+ 7Q
8+ 6Q

− 1−Q
4+ 3Q

)]
+ 6

5
f12

Q+ 2
3Q+ 4

(
P01

8R+ 7
4R+ 2

+ 1− R
2R+ 1

)
− 1

3Q+ 4
[∇s · (qv)]13. (3.23)

These coupled ordinary differential equations constitute the main result of this section.
The external forcing in these equations is encapsulated in the first term on the right-
hand side of (3.21), which describes the effect of the applied electric field on the
leading-order dipole moment. It is also clear from (3.21) that charge convection cannot
be neglected even at zeroth order, as was previously done in the theories of Shutov
(2002) and Shkadov & Shutov (2002). Solving (3.21)–(3.23) requires the Legendre
coefficients of the charge convection term as well as the first-order shape coefficient
f12. These unknowns will be determined below after we solve for the fluid flow, which
affects both interfacial charge convection and droplet deformation.

3.3. Flow problem: streamfunction formulation
We now turn to the calculation of the fluid flow outside and inside the drop.
Upon application of the field, electric stresses develop at the interface, leading to
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deformations and flow. Since the flow is axisymmetric, we use a Stokes streamfunction
Ψ (r, θ) to determine the fluid velocity, which has components

vr = 1
r2 sin θ

∂θΨ , vθ =− 1
r sin θ

∂rΨ , (3.24a,b)

in spherical coordinates. The streamfunction satisfies the biharmonic equation∇4Ψ = 0,
the general solutions to which outside and inside the drop are (Kim & Karrila 2013):

Ψ =
∞∑

n=2

(Anr−n+1 + Bnr−n+3)Gn(η), Ψ̄ =
∞∑

n=2

(Ānrn + B̄nrn+2)Gn(η), (3.25a,b)

where Gn(η) are Gegenbauer functions of degree −1/2 of the first kind (Abramowitz
& Stegun 1972). They are related to Legendre polynomials and are regular everywhere
in −1 6 η6 1:

Gn(η)= Ln−2(η)−Ln(η)

2n− 1
, n > 2. (3.26)

The first two functions are defined as G0(η) = 1 and G1(η) = −η, and we also note
the property: G ′n(η)=−Ln−1(η).

Following the same methodology as for the electric problem, we seek solutions as
expansions in powers of δ. As will become evident in § 3.5 when performing the
stress balance on the interface, the zeroth- and first-order electric stresses acting on
the interface at most induce fluid motions of the form

Ψ = Ψ03G3(η)+ δ[Ψ13G3(η)+Ψ15G5(η)] +O(δ2), (3.27a)

Ψ̄ = Ψ̄03G3(η)+ δ[Ψ̄13G3(η)+ Ψ̄15G5(η)] +O(δ2), (3.27b)

where

Ψ03 = A03r−2 + B03, Ψ̄03 = Ā03r3 + B̄03r5, (3.28a,b)

Ψ13 = A13r−2 + B13, Ψ̄13 = Ā13r3 + B̄13r5, (3.28c,d)

Ψ15 = A15r−4 + B15r−2, Ψ̄15 = Ā15r5 + B̄15r7. (3.28e,f )

In particular, the flow is entirely determined by twelve coefficients that are functions
of time and that we proceed to solve for by application of the boundary conditions.

3.4. Kinematic boundary condition
The kinematic boundary condition relates the shape deformation to the fluid
velocity so as to satisfy the no-slip and no-penetration boundary conditions at the
interface. The streamfunction Ψ can be used to determine the normal and tangential
components of the fluid velocity on the drop surface, which are obtained by combining
(3.6a)–(3.6b) and (3.24) as

vn = vn
02L2(η)+ δ[vn

10 + vn
12L2(η)+ vn

14L4(η)] +O(δ2), (3.29a)
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v̄n = v̄n
02L2(η)+ δ[v̄n

10 + v̄n
12L2(η)+ v̄n

14L4(η)] +O(δ2), (3.29b)

vt = vt
01L1(η) sin θ + δ[vt

11L1(η)+ vt
13L3(η)] sin θ +O(δ2), (3.29c)

v̄t = v̄t
01L1(η) sin θ + δ[v̄t

11L1(η)+ v̄t
13L3(η)] sin θ +O(δ2). (3.29d)

The detailed expressions of the velocity coefficients are provided in appendix B. The
no-penetration boundary condition is expressed as vn= v̄n=−ξ̇ , which yields the eight
relations

vn
02 = v̄n

02 = δḟ12, vn
10 = v̄n

10 = δḟ20, (3.30a,b)

vn
12 = v̄n

12 = δḟ22, vn
14 = v̄n

14 = δḟ24. (3.30c,d)

Similarly, the no-slip boundary condition vt = v̄t dictates that

vt
01 = v̄t

01, vt
11 = v̄t

11, vt
13 = v̄t

13. (3.31a−c)

The matching of orders in (3.30) might seem surprising at first due to the presence
of terms involving δ on the right-hand side. However, it is the only possible solution,
as the leading-order term in ξ̇ involves δ. This implies that temporal derivatives of
the shape functions in fact scale as δ−1, suggesting that the characteristic time scale
for the shape transient is not the Maxwell–Wagner relaxation time used here for non-
dimensionalization. This point will be made clearer in § 4.2.

3.5. Dynamic boundary condition
We now proceed to enforce the dynamic boundary condition of (2.7), which in
dimensionless form reads

n · (JTEK+Ma JTHK)= 1
CaE

(∇s · n)n, (3.32)

and requires us to evaluate electric and hydrodynamic stresses on the interface.

3.5.1. Electric and hydrodynamic stresses
As previously shown in (2.9), the jump in electric tractions can be decomposed

into tangential and normal components, both of which involve quadratic products of
expansions derived above. The tangential component qEt = qEtt is continuous and is
expanded as

qEt = [qEt]01L1(η) sin θ + δ{[qEt]11L1(η)+ [qEt]13L3(η)} sin θ +O(δ2). (3.33)

Similarly, the expansion for the jump in electric pressure in (2.9) is found to be

J pEK= J pEK00 + J pEK02L2(η)+ δ{J pEK10 + J pEK12L2(η)+ J pEK14L4(η)} +O(δ2).
(3.34)

The expressions for the coefficients are provided in appendix A.
The jump in hydrodynamic tractions is evaluated using (3.6c)–(3.6d), in which the

requisite components of the stress tensor in spherical coordinates are obtained from
the velocity components as

TH,rr = −pH + 2∂rv
r, T̄H,rr =−p̄H + 2λ∂rv̄

r, (3.35a,b)
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TH,rθ = r−1∂θv
r + r∂r(v

θr−1), T̄H,rθ = λ[r−1∂θ v̄
r + r∂r(v̄

θr−1)], (3.35c,d)

TH,θθ = −pH + 2r−1(∂θvθ + vr), T̄H,θθ =−p̄H + 2r−1λ(∂θ v̄θ + v̄r). (3.35e,f )

The diagonal stress components TH,rr and TH,θθ involve the fluid pressure pH , which
can be obtained from the velocity by integration of the momentum equation. After
some algebra, the jumps in hydrodynamic stresses induced by the zeroth- and first-
order streamfunctions Ψ0, Ψ1, scaled with µ/τMW , are found as

JTHKnn = JTHKnn
0 + δJTHKnn

1 +O(δ2)

= JTHKnn
00 + JTHKnn

02L2(η)

+ δ{JTHKnn
10 + JTHKnn

12L2(η)+ JTHKnn
14L4(η)} +O(δ2), (3.36a)

JTHKnt = JTHKnt
0 + δJTHKnt

1 +O(δ2)

= JTHKnt
01L1(η) sin θ + δ{JTHKnt

11L1(η)+ JTHKnt
13L3(η)} sin θ +O(δ2),

(3.36b)

where the various coefficients can all be expressed in terms of B03, B13, B15, as
detailed in appendix B.

3.5.2. Stress balance
The electric and hydrodynamic traction jumps can now be substituted into the stress

balance (3.32) to satisfy the dynamic boundary condition. In the normal direction, the
stress balance requires:

J pEK00 +Ma JTHKnn
00 =

2
CaE

, (3.37a)

J pEK02 +Ma JTHKnn
02 =

4
CaE

δf12, (3.37b)

J pEK10 +Ma JTHKnn
10 = −

2
CaE

δf 2
12, (3.37c)

J pEK12 +Ma JTHKnn
12 =

4
CaE

δ
(

f22 − 5
7 f 2

12

)
, (3.37d)

J pEK14 +Ma JTHKnn
14 =

18
CaE

δ
(

f24 − 2
7 f 2

12

)
. (3.37e)

In the tangential direction, it yields

[qEt]01 +Ma JTHKnt
01 = 0, (3.38a)

[qEt]11 +Ma JTHKnt
11 = 0, (3.38b)

[qEt]13 +Ma JTHKnt
13 = 0. (3.38c)

The above balances now allow us to define more explicitly the value of the
small-deformation parameter δ. The driving force for the flow is the tangential
electric stress qEt, which according to (3.38) induces hydrodynamic tractions scaling
with O(Ma−1). The magnitude of the resulting flow therefore is such that all normal
tractions, both electric and hydrodynamic, in (3.37) are of order O(1). Balancing
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these tractions with surface tension forces thus requires us to choose δ ∝ CaE. For
consistency with previous small-deformation theories, we define δ explicitly as

δ = 3 CaE

4(1+ 2R)2
. (3.39)

In particular, the assumption of small deformation yields no restriction on the
magnitude of the Mason number, which is only constrained by the approximation
discussed in § 3.2.2.

3.6. Nonlinear charge convection
As a final calculation, we determine the Legendre coefficients of the nonlinear
convection term in the charge convection (2.5). The convection term is straightforward
to calculate after applying the identity

∇s · (qv)= qvn(∇s · n)+∇s · (qvt), (3.40)

in which the expansions for q, vn, vt= vtt and ∇s · n can be substituted together with

∇s = [I − êrêr + δ(êrêθ + êθ êr)] · ∇+O(δ2). (3.41)

All calculations done, the relevant Legendre coefficients appearing in (3.21)–(3.23) for
the dipole and octupole moments are found to be

[∇s · (qv)]01 = − 2
5 q01B03 + 6

5 q01δḟ12, (3.42a)

[∇s · (qv)]11 = 2
5 q01A13 + 2

5 q11A03 − 6
35 q13A03 − 54

35 q01A03f12

+ 4
5 q01δḟ22 + 4

5 q11δḟ12 + 18
35 q13δḟ12 + 38

35 q01δf12 ḟ12, (3.42b)

[∇s · (qv)]13 = 8
5 q01A13 + 4

3 q01A15 + 2
3 q01B15 + 8

5 q11A03

+ 4
15 q13A03 − 104

15 q01A03f12 + 6
5 q01δḟ22 + 8

9 q01δḟ24

+ 6
5 q11δḟ12 + 8

15 q13δḟ12 − 4
5 q01δf12 ḟ12. (3.42c)

4. Summary of the small-deformation theory
The set of asymptotic expansions obtained in § 3 provides a closed system of

equations for all unknown coefficients. We summarize here the results of the theory
and outline the solution procedure at first and second order. We also compare and
contrast our predictions with the existing theories of Taylor (1966), Ajayi (1978),
Esmaeeli & Sharifi (2011) and Lanauze et al. (2013).

4.1. Taylor deformation parameter
For easy comparison with previous theories and experiments, we introduce Taylor’s
deformation parameter D, defined as

D= r‖ − r⊥

r‖ + r⊥
, (4.1)

where r‖ and r⊥ denote the length of the drop in directions parallel and perpendicular
to the electric field, respectively. The sign of D distinguishes between oblate (D< 0)
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and prolate (D> 0) shapes. For an axisymmetric drop, r‖ and r⊥ are reached at θ = 0
and π/2, respectively:

r‖ = r(0)= 1+ δf12 + δ2 ( f20 + f22 + f24)+O(δ3), (4.2a)

r⊥ = r(π/2)= 1− 1
2δf12 + δ2

(
f20 − 1

2 f22 + 3
8 f24
)+O(δ3), (4.2b)

from which we find

D= 3
4

[
δf12 + δ2

(
f22 + 5

12 f24 − 1
4 f 2

12

)]+O(δ3). (4.3)

4.2. First-order theory
We first summarize the first-order theory, which allows us to compare our results with
those of Taylor (1966), Esmaeeli & Sharifi (2011) and Lanauze et al. (2013). The
zeroth-order stress balance (3.37b) and (3.38a), together with the dipole relaxation
(3.21), provide three coupled equations for the three unknowns B03, f12 and P01. We
first eliminate B03 by combining (3.37a) and (3.38a), and after manipulations we arrive
at a coupled system of first-order ordinary differential equations of the form

d
dt

[
P01
f12

]
=F1(P01, f12;CaE,Ma, R,Q, λ), (4.4)

where F1 is a nonlinear function whose explicit form is cumbersome and is omitted
here for brevity. These equations can be integrated numerically in time subject to
initial conditions. In all of the results shown below, we assume that the drop surface
is initially spherical and does not carry any charge at t= 0, which provides the initial
conditions:

P01(0)= Q− 1
Q+ 2

, f12(0)= 0. (4.5a,b)

Equations (4.4) can easily be compared to previous first-order theories. First,
neglecting charge convection decouples the dipole evolution equation from the fluid
problem, yielding the simple relaxation equation

Ṗ01 + P01 = 1− R
1+ 2R

, (4.6)

the solution to which is:

P01 = 1− R
1+ 2R

+
(

Q− 1
Q+ 2

− 1− R
1+ 2R

)
e−t. (4.7)

Substituting (4.7) into (4.4) then yields a simplified model which is similar to that
of Lanauze et al. (2013) when the effect of fluid inertia is negligible. If we further
neglect charge relaxation, we can easily solve for the transient deformation parameter
as

D(t)=DT(1− e−t/τd) where τd = aµ
γ

(19λ+ 16)(2λ+ 3)
40(λ+ 1)

, (4.8)

which matches the result of Esmaeeli & Sharifi (2011). In particular, the viscous-
capillary time scale τd emerges as the characteristic time scale for shape deformations,
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which also rationalizes the seeming contradiction in the matching of terms in the
kinematic boundary of (3.30). Here, DT is the steady first-order deformation parameter
first obtained by Taylor (1966) as

DT = 9
16

ΦT

(1+ 2R)2
CaE (4.9)

in terms of Taylor’s discriminating function ΦT :

ΦT = (1− R)2 + R(1− RQ)
[

2+ 3
5

2+ 3λ
1+ λ

]
. (4.10)

Note that (4.8) predicts an exponential relaxation towards the steady drop shape
and therefore fails to capture the non-monotonic transient deformation observed in
experiments and simulations (Lanauze et al. 2015) and also predicted by the full
solution of (4.4), as we discuss in § 5.

4.3. Second-order theory
The first-order theory can then be improved by solution of the second-order equations,
which involve the additional unknowns B13, B15, f22, f24, P11 and P13. These are
provided by the first-order normal and tangential stress balances of (3.37c), (3.37e),
(3.38b) and (3.38c), together with the moment evolution (3.22)–(3.23). The flow
unknowns B13 and B15 can be eliminated by manipulating (3.37c) and (3.38b) for
B13, and (3.37e) and (3.38c) for B15. When combined with the moment evolution
equations, this yields a system of differential equations of the form

d
dt

P11
P13
f22
f24

=F2(P11, P13, f22, f24; P01, f12;CaE,Ma, R,Q, λ), (4.11)

where F2 is another nonlinear function. Once again, these equations can be integrated
in time numerically to obtain the multipole moments as well as shape functions
entering Taylor’s deformation parameter of (4.3). The initial conditions for these
variables in the case of an initially spherical and uncharged drop are

P11(0)= P13(0)= f22(0)= f24(0)= 0. (4.12)

If charge convection is neglected, (3.22)–(3.23) for the moments become uncoupled
from the flow problem and only involve electric parameters. At steady state, the first-
order multipole moments are then obtained as

P11 = 6
5

f12

(
1− R
1+ 2R

)2

, P13 = 9
5

f12
1− R

1+ 2R
, (4.13a,b)

which matches (25) and (26) in the work of Ajayi (1978). The numerical codes
solving systems (4.4) and (4.11) are available upon request.
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System ε/ε0 ε̄/ε0 σ σ̄ µ µ̄ γ a E0

(s m−1) (s m−1) (Pa s) (Pa s) (mN m−1) (mm) (kV cm−1)

1a 4.9 2.8 5.8× 10−11 0.2× 10−11 0.68 0.05 4.5 2.0 1.6
1b 4.9 2.8 5.8× 10−11 0.2× 10−11 0.68 0.05 4.5 2.0 2.1
1c 4.9 2.8 5.8× 10−11 0.2× 10−11 0.68 0.05 4.5 2.0 6.1
2a 5.3 3.0 4.5× 10−11 0.12× 10−11 0.69 0.97 4.5 0.7 0.45–2.0
2b 5.3 3.0 4.5× 10−11 0.12× 10−11 0.69 0.97 4.5 2.1 0.26–1.2
3 2.5 4.3 2.7× 10−12 1.7× 10−10 0.017 0.254 3.0 2.5 2.0–9.2

TABLE 1. Material properties: systems 1, 2 and 3 correspond to the experiments of
Tsukada et al. (1993), Salipante & Vlahovska (2010) and Lanauze et al. (2015),
respectively. ε0 = 8.8542× 10−12 F m−1 denotes the permittivity of vacuum.

System R Q λ CaE Ma

1a 29.0 0.57 0.074 0.49 0.65
1b 29.0 0.57 0.074 0.85 0.375
1c 29.0 0.57 0.074 7.18 0.045
2a 36.6 0.57 1.41 0.03–0.6 0.27–5.4
2b 36.6 0.57 1.41 0.03–0.6 0.8–16
3 0.016 1.72 14.7 0.0075–0.155 0.2–4.1
4 0.1 1.37 1 0.3 0.5

TABLE 2. Dimensionless parameters corresponding to the material properties of table 1:
systems 1, 2, 3 and 4 correspond to the experiments of Tsukada et al. (1993), Ha & Yang
(2000), Salipante & Vlahovska (2010) and Lanauze et al. (2015), respectively.

5. Results and discussion
We now compare our theoretical results with existing experimental data, previous

small-deformation theories, as well as fully nonlinear numerical simulations using
an axisymmetric boundary element method described in appendix C. The material
properties, drop sizes and electric field strengths are chosen as in table 1 to match the
experimental values of Lanauze et al. (2015) (system 1), who measured transient drop
dynamics, and of Salipante & Vlahovska (2010) (system 2) for steady deformations,
and corresponding dimensionless parameter values are provided in table 2. Both of
these studies considered oblate drops. We also present a few results on prolate drops
using the experimental values of Tsukada et al. (1993) (system 3) and Ha & Yang
(2000) (system 4). The latter study, however, did not report all the material properties
required to construct all five dimensionless parameters in our model; we choose to
set the values of the electric capillary number and Mason number to CaE = 0.3 and
Ma= 0.5 in this case.

5.1. Effect of transient charge relaxation and shape deformation
In this section, we first neglect nonlinear charge convection and focus on the effects
of transient charge relaxation and transient shape deformation alone. Here we adopt
the experimental values of system 1b. The drop deformation is plotted as a function
of time in figure 2 for three distinct cases. In figure 2(a), both nonlinear charge
convection and transient charge relaxation are neglected. In this case, the only time
dependence enters through the temporal derivatives of the shape functions. We find

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.704
Downloaded from http:/www.cambridge.org/core. IP address: 174.65.37.72, on 30 Nov 2016 at 04:06:08, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.704
http:/www.cambridge.org/core


Nonlinear small-deformation theory for droplet electrohydrodynamics 241

–0.10

–0.08

–0.06

–0.04

–0.02

0

0.02

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Lanauze et al. (2015)
SDT: Taylor (1966)
SDT: Ajayi (1978)

Boundary element method

(a)

(c)

–0.10

–0.08

–0.06

–0.04

–0.02

0

0.02(b)

–0.10

–0.08

–0.06

–0.04

–0.02

0

0.02

FIGURE 2. (Colour online) Deformation parameter D as a function of time for the
parameters of system 1b in the absence of charge convection: (a) effect of transient shape
relaxation only (no transient charge relaxation), (b) effect of transient charge relaxation
only (no transient shape relaxation), and (c) effect of both transient shape and charge
relaxation. Symbols show experimental data of Lanauze et al. (2015). Boundary element
simulation results using the full nonlinear model and the algorithm of appendix C are also
shown.

that the drop shape becomes oblate (D < 0), and our theoretical results asymptote
at long times towards the steady-state predictions of Taylor (1966) and Ajayi (1978)
at first and second order, respectively. Both steady states, however, overpredict the
drop deformation, and it is found, rather curiously, that the theory performs more
poorly at second order than at first order; this was already noted by Ajayi (1978)
and is a consequence of neglecting charge convection, as further discussed below.
The transient is also poorly captured: the model predicts a monotonic increase of
the drop deformation towards the oblate steady state and fails to capture the initial
dynamics seen in experiments, where the drop first adopts a prolate shape before
becoming oblate. Figure 2(b) shows the opposite situation, in which transient shape
deformation is neglected but transient charge relaxation is included. In this case, the
shape instantaneously adjusts to the charge distribution, which explains the immediate
deformation to a prolate shape at t = 0 as a result of the instantaneous polarization
of the drop according to (4.5). The deformation subsequently relaxes monotonically
towards its steady oblate value. However, accounting for both transient phenomena
in figure 2(c) captures the transient dynamics correctly while still evolving towards
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FIGURE 3. (Colour online) (a) Deformation parameter D as a function of time for the
parameters of system 1a. (b) Steady interfacial charge profile. The plots show experimental
results of Lanauze et al. (2015), fully nonlinear boundary element simulations, first- and
second-order small-deformation theory (with nonlinear charge convection), and the steady
results of Taylor (1966) and Ajayi (1978) that neglected charge convection.

the steady deformation values of Taylor (1966) and Ajayi (1978) in the absence of
charge convection. These results underscore the importance of including all transient
effects if one wants to capture the correct shape dynamics.

5.2. Effect of nonlinear charge convection
We now turn to the full theoretical model, which includes transient charge and shape
relaxation as well as nonlinear charge convection. As we show here, the main effect
of charge convection is to reduce the strength of the interfacial velocity, thereby
causing oblate drops to deform less but prolate drops to deform more, in agreement
with computational studies (Feng 1999; Lanauze et al. 2015). We first consider the
dynamics in a relatively weak electric field using the parameters of system 1a in
figure 3. First, we note in figure 3(a) that the boundary element simulations perform
best and capture both the transient and the steady state with very good accuracy. Our
small-deformation theory with charge convection also captures the transient very well,
but still slightly overpredicts the steady deformation parameter, albeit not as much
as the models of Taylor (1966) and Ajayi (1978). Interestingly, we find that while
the second-order theory of Ajayi is worse than the first-order theory of Taylor in the
absence of charge convection, such is not the case in our model, where including
second-order terms is seen to improve the solution. The poor performance of Ajayi’s
model is a direct consequence of the neglect of charge convection, which results in a
stronger dipole moment and in turn leads to larger deformations. Charge convection
by the flow, on the other hand, causes the transport of positive and negative charges
from the poles towards the equator, thus effectively reducing the induced dipole.
This point is evident in figure 3(b), showing the steady charge distribution on the
drop surface, where we see that the second-order theory with charge convection best
approximates the charge profile from boundary element simulations. This numerical
charge profile, however, exhibits a sharper transition from negative to positive values
at the equator.

The effect of increasing field strength is shown in figure 4, corresponding to system
1b. Unsurprisingly, stronger fields cause larger drop deformations, which are not as
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FIGURE 4. (Colour online) (a) Deformation parameter D as a function of time
for the parameters of system 1b. (b) Steady interfacial charge profile. For these
parameter values, the charge distribution predicted by the boundary element simulation
develops a discontinuity at the equator. See supplementary online materials at
https://doi.org/10.1017/jfm.2016.704 for a movie showing the dynamics and flow
field in this case.
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FIGURE 5. (Colour online) (a) Deformation parameter D as a function of time for the
parameters of system 1c. (b) Steady interfacial charge profile. The steady deformation
values predicted by the models of Taylor (1966) and Ajayi (1978) in this case are −0.75
and −1.40, respectively, and out of the frame of panel (a). For these parameter values, the
charge discontinuity at the equator is so severe that the boundary element simulations blow
up before reaching steady state; in this case, the charge profile shown in (b) corresponds
to a time shortly before the instability develops.

easily captured by the theory. While the boundary element simulation matches the
experimental data quite well, our nonlinear small-deformation theory captures the
transient well but shows a significant departure at steady state. Nevertheless, the
second-order theory still outperforms all previous theoretical models. The difficulty
in capturing the steady state accurately can be understood by considering the charge
profile in figure 4(b), where a sharp gradient is observed across the equator in the
numerical data from boundary element simulations. This sharp gradient cannot be
captured using only two Legendre functions as in the expansion of (3.16), which
explains the discrepancy. The problem becomes yet more severe in stronger fields, as
shown in figure 5 in the case of system 1c. There, an actual discontinuity appears in
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FIGURE 6. (Colour online) (a) Deformation parameter D as a function of time for the
parameters of system 4, which correspond to a steady prolate shape. (b) Steady interfacial
charge profile.

the charge profile, leading to the very poor performance of small-deformation theories
and to numerical instabilities in the boundary element simulation, which blows up
before reaching steady state. The formation of a charge shock in strong fields was
first observed in the simulations of Lanauze et al. (2015), who also were not able
to resolve it numerically using their boundary element algorithm based on spline
interpolation. The boundary element method used here and described in appendix C
solves the charge conservation equation using finite volumes, and yet is still unable
to capture the discontinuity, suggesting that higher-order non-oscillating numerical
schemes should be employed towards this purpose (LeVeque 2002).

The case of prolate deformations is illustrated in figure 6 using the parameters of
system 4. In this case, the drop deformation increases monotonically with time. The
steady deformation parameter obtained by simulations with Ma = 0.5 is D = 0.27,
which slightly exceeds the value of D = 0.22 found by Lac & Homsy (2007), who
neglected charge convection (Ma → ∞); the experiments of Ha & Yang (2000),
for which the value of Ma is unknown, reported a deformation of D = 0.25. Our
small-deformation theory only provides a modest improvement at steady state over the
predictions of Taylor (1966) and Ajayi (1978), again confirming that nonlinear charge
convection has a weaker effect for prolate drops. This again can be rationalized
by considering the interfacial charge profile in figure 6(b): convection by the
flow is seen to cause charge accumulation at the drop poles, and thus does not
cause any discontinuity as in the oblate case. Instead, the charge profile remains
relatively smooth and therefore can be reasonably well approximated using Legendre
polynomials.

As a final test, we compare our theoretical and numerical predictions for the
steady drop shapes with the experimental results of Salipante & Vlahovska (2010) for
systems 2a and 2b, with oblate drops, and Tsukada et al. (1993) for system 3, with
prolate drops, in figure 7. The experimental system 2 used two different drop sizes
but identical material properties. At a given value of the electric capillary number
CaE, increasing drop size is equivalent to decreasing the electric field or increasing
the Mason number Ma, which reduces the effect of charge convection. Charge
convection is therefore more significant in figure 7(a) for the smaller drop size, and
indeed departures of our numerical and theoretical results from the small-deformation
theories of Taylor (1966) and Ajayi (1978) are more significant in this case. In both
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FIGURE 7. (Colour online) Steady drop deformation D as a function of electric capillary
number CaE for the parameters of: (a) system 2a, (b) system 2b, and (c) system 3. The
various models are compared to the experimental measurements of Tsukada et al. (1993)
and Salipante & Vlahovska (2010).

cases, our theoretical model performs quite well at predicting the steady drop shape,
but still slightly overpredicts the experimental values, especially as CaE increases;
nonetheless the agreement is noticeably better than in previous models. The effect
of charge convection is extremely weak in the case of prolate drops in system 3,
as shown in figure 7(c). As a consequence, our first- and second-order theories are
indistinguishable from Taylor’s and Ajayi’s results, and the deformations predicted by
our axisymmetric boundary element method only slightly exceed the finite-element
simulation values of Tsukada et al. (1993), who neglected charge convection.

6. Concluding remarks

In summary, we have developed a small-deformation theory for the complete
Melcher–Taylor leaky dielectric model including the nonlinear charge convection
term. The theory is most relevant for small-sized drops or drops with high surface
tension but non-negligible charge convection. A domain perturbation method based
on spherical harmonics valid for small deviations from sphericity was employed to
represent the drop shape up to second order in electric capillary number O(Ca2

E).
The zeroth- and first-order electric and flow fields were solved for using multipole
expansions. On making the appropriate assumptions, we were able to recover the
previous theoretical models (Taylor 1966; Ajayi 1978; Esmaeeli & Sharifi 2011;
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Lanauze et al. 2013). The discrepancy of Ajayi’s second-order theory predicting drop
deformation more inaccurately than Taylor’s first-order theory in the case of oblate
drops was resolved by including charge convection in the theoretical model. Retention
of transient charge relaxation and shape deformation was also shown to be critical
in order to accurately capture the transient non-monotonic drop deformation, as we
validated by comparison with both numerical simulations and existing experimental
data.

While our second-order theory showed good agreement with simulations and
experiments, departures become significant with increasing electric field strength
as deformations become larger. While possible in principle, extending the theory
to include higher-order corrections in CaE is exceedingly difficult due to the
nonlinearities in the governing equations. The problem of capturing large deformations
in a theoretical model would likely be better addressed using spheroidal coordinates,
as in the previous work of Zhang, Zahn & Lin (2013), though this method has yet to
be adapted to include charge convection. One should also note that the present study is
limited to axisymmetric drop deformations. In strong electric fields, experiments have
demonstrated the existence of a symmetry-breaking bifurcation leading to Quincke
electrorotation (Salipante & Vlahovska 2010, 2013; He, Salipante & Vlahovska 2013),
which is characterized by non-axisymmetric shapes and a primarily rotational flow.
Such effects cannot be captured by the theory and simulations presented herein. From
a theoretical standpoint, a fully three-dimensional model would preclude the simple
use of a Stokes streamfunction as done in § 3.3 for the solution of the flow problem,
which could instead by obtained using Lamb’s general solution of the Stokes equations
(Kim & Karrila 2013). Such a model would also be useful for the description of
pair interactions between widely separated drops using the method of reflections, in
a similar manner as in the previous work of Anderson (1985) for thermocapillary
motion of drops, or as in our previous theory for electrohydrodynamic interactions
between rigid spheres (Das & Saintillan 2013); the understanding of such interactions
could then pave the way for dilute suspension theories for electrohydrodynamics of
multiple drops. Lastly, three-dimensional boundary element simulations would be of
great use to describe large deformations and electrorotation in strong fields, and are
the subject of our current work.
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Appendix A. Expansion coefficients for the electric problem

The normal and tangential components of the electric field are expressed in terms
of the dipole and octupole moments as:
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En
01 = 1+ 2P01, Ēn

01 = 1− P01, (A 1a,b)

En
11 = 2P11 − 6

5 f12(1+ P01), Ēn
11 =−P11 − 6

5 f12(1− 2P01), (A 1c,d)

En
13 = 4P13 + 6

5 f12(1− 4P01), Ēn
13 =−3P13 + 6

5 f12
(
1+ 7

2 P01
)
, (A 1e,f )

and

Et
00 = −(1− P01), (A 2a)

Et
10 = P13 + P11 − f12(1+ 2P01), (A 2b)

Et
12 = 5P13 − f12(2+ 7P01). (A 2c)

Substituting (A 1) into Gauss’s law and Ohm’s law yields the coefficients for the
surface charge and jump in Ohmic current, respectively:

q01 = En
01 −QĒn

01 = 1+ 2P01 −Q(1− P01), (A 3a)
q11 = En

11 −QĒn
11 = 2P11 − 6

5 f12(1+ P01)−Q[−P11 − 6
5 f12(1− 2P01)], (A 3b)

q13 = En
13 −QĒn

13 = 4P13 + 6
5 f12(1− 4P01)−Q[−3P13 + 6

5 f12
(
1+ 7

2 P01
)], (A 3c)

and

J jKn
01 = REn

01 − Ēn
01 = R(1+ 2P01)− 1+ P01, (A 4a)

J jKn
11 = REn

11 − Ēn
11 = R[2P11 − 6

5 f12(1+ P01)] + P11 + 6
5 f12(1− 2P01), (A 4b)

J jKn
13 = REn

13 − Ēn
13 = R[4P13 + 6

5 f12(1− 4P01)] + 3P13 − 6
5 f12

(
1+ 7

2 P01
)
. (A 4c)

The tangential electric stress coefficients in (3.33) can then be obtained as

[qEt]01 = q01Et
01, (A 5a)

[qEt]11 = q01Et
11 + 2

5 q01Et
13 + q11Et

01, (A 5b)

[qEt]13 = 3
5 q01Et

13 + q13Et
01, (A 5c)

where the various products on the right-hand side are easily evaluated using (A 2) and
(A 3). The electric pressure coefficients in (3.34) are given by

J pEK00 = 1
6(E

n2
01 −QĒn2

01)+ 1
3(Q− 1)Et2

00, (A 6a)

J pEK02 = 1
3(E

n2
01 −QĒn2

01)− 1
3(Q− 1)Et2

00, (A 6b)

J pEK10 = 1
3(E

n
01En

11 −QĒn
01Ēn

11)+ 2
3 Et

00(E
t
10 − 1

5 Et
12), (A 6c)

J pEK12 = 2
3(E

n
01En

11 −QĒn
01Ēn

11)+ 3
7(E

n
01En

13 −QĒn
01Ēn

13)+ 2
3 Et

00(
5
7 Et

12 − Et
10)(A 6d)

J pEK14 = 4
7(E

n
01En

13 −QĒn
01Ēn

13)− 12
35 Et

00Et
12, (A 6e)

and can be calculated using (A 1) and (A 2).
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Appendix B. Expansion coefficients for the flow problem
The zeroth-order coefficients of the normal and tangential components of the

interfacial velocity used in (3.29) are found to be

vn
02 = A03 + B03, v̄n

02 = Ā03 + B̄03, (B 1a,b)

vt
01 = A03, v̄t

01 =− 3
2 Ā03 − 5

2 B̄03. (B 1c,d)

At first order, the normal velocities read

vn
10 = − 2

5 f12(A03 + B03), (B 2a)

vn
12 = A13 + B13 − 2

7 f12(3A03 + 2B03), (B 2b)

vn
14 = A15 + B15 − 12

35 f12(8A03 + 3B03), (B 2c)

v̄n
10 = − 2

5 f12(Ā03 + B̄03), (B 2d)

v̄n
12 = Ā13 + B̄13 − 1

7 f12(Ā03 − B̄03), (B 2e)

v̄n
14 = Ā15 + B̄15 + 6

35 f12(9Ā03 + 19B̄03), (B 2f )

whereas tangential velocities are given by

vt
11 = A13 + 3

5 A15 + 3
10 B15 − 2

5 f12(7A03 + 3B03), (B 3a)

vt
13 = 7

5 A15 + 7
10 B15 − 3

5 f12(7A03 + 3B03), (B 3b)

v̄t
11 = − 3

2 Ā13 − 5
2 B̄13 − 3

4 Ā15 − 21
20 B̄15 − 3

5 f12(3Ā03 + 7B̄03), (B 3c)

v̄t
13 = − 7

4 Ā15 − 49
20 B̄15 − 9

10 f12(3Ā03 + 7B̄03). (B 3d)

The zeroth-order boundary conditions (3.30a) and (3.31a) provide us with the
relations

A03 =−B03 + δḟ12, Ā03 =−B03 + 7
2δḟ12, B̄03 = B03 − 5

2δḟ12. (B 4a−c)

Using these relations together with the condition that f20 = −f 2
12/5 obtained in § 3.1

from volume conservation, it is easy to show that (3.30b) is trivially satisfied. The
remaining first-order boundary conditions then yield six additional equations that can
be combined to show that

A13 = −B13 − 2
7 f12B03 + δḟ22 + 6

7δf12 ḟ12, (B 5a)

Ā13 = −B13 + 3
7 f12B03 + 7

2δḟ22 + 1
2δf12 ḟ12, (B 5b)

B̄13 = B13 − 5
7 f12B03 − 5

2δḟ22 + 5
14δf12 ḟ12, (B 5c)

A15 = −B15 − 12
7 f12B03 + δḟ24 + 96

35δf12 ḟ12, (B 5d)

Ā15 = −B15 − 6
7 f12B03 + 11

2 δḟ24 + 3
35δf12 ḟ12, (B 5e)

B̄15 = B15 − 6
7 f12B03 − 9

2δḟ24 + 93
35δf12 ḟ12. (B 5f )

Equations (B 4)–(B 5) therefore allow us to reduce the number of flow unknowns to
three, namely B03, B13 and B15. The hydrodynamic stress is obtained by using (3.35).
At zeroth order, we find:

JTHKnn
00 = J pHK00, (B 6a)
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JTHKnn
02 = (2+ 3λ)B03 − 1

2(16+ 19λ)δḟ12, (B 6b)

JTHKnt
01 = 5(1+ λ)B03 − 1

2(16+ 19λ)δḟ12. (B 6c)

Similarly, at first order,

JTHKnn
10 = J pHK10 + 2

5(−1+ 11λ)B03f12 + 1
5(8− 43λ)δḟ12f12, (B 7a)

JTHKnn
12 = (2+ 3λ)B13 + 1

7(−8+ 13λ)B03f12 − 1
2(16+ 19λ)δḟ22

− 105
14 λ δf12 ḟ12, (B 7b)

JTHKnn
14 = 3

10(4+ 5λ)B15 + 3
35(28+ 37λ)B03f12 − 3

4(16+ 17λ)δḟ24

− 3
70(32+ 47λ)δf12 ḟ12, (B 7c)

JTHKnt
11 = 5(1+ λ)B13 + 27

10(1+ λ)B15 − 4
35(33+ 18λ)B03f12

− 1
2(16+ 19λ)δḟ22 − 9

20(16+ 17λ)δḟ24 + 2
175(227− 466λ)δf12 ḟ12, (B 7d)

JTHKnt
13 = 63

10(1+ λ)B15 − 9
5(1+ λ)B03f12 − 21

20(16+ 17λ)δḟ24

+ 9
50(4− 7λ)δf12 ḟ12. (B 7e)

In (B 6) and (B 7), J pHK00 and J pHK10 denote uniform hydrostatic pressure jumps that
do not affect drop shape.

Appendix C. Axisymmetric boundary element method
We outline the numerical method used in § 5 for the solution of the full nonlinear

problem in axisymmetric geometry based on boundary integral equations (Jaswon
1963; Symm 1963). The method shares similarities with that of Lanauze et al.
(2015), but makes use of a finite-volume algorithm for the solution of the charge
convection equation. We first solve Laplace’s equation for the electric potential using
a single-layer potential (Sherwood 1988; Baygents, Rivette & Stone 1998; Lac &
Homsy 2007; Lanauze et al. 2015), yielding the integral equation

ϕ(x0)=−x0 ·E0 +
∫

C
JEn(x)KGa(x0; x) ds(x), (C 1)

where C is the one-dimensional curve describing the drop shape, which is parametrized
by arclength s. Equation (C 1) is valid for any location of the evaluation point x0
on the drop surface C or in either of the fluid domains V and V̄ . It involves the
axisymmetric Green’s function for Laplace’s equation, which is obtained by integration
of the three-dimensional free-space Green’s function over the azimuthal direction:

Ga(x0; x)=
∫ 2π

0

dφ
4πr

, where r= |r| = |x0 − x|. (C 2)

Knowledge of the single-layer potential density JEnK therefore allows determination
of the electric potential anywhere in space by simple integration, which prompts us
to seek an equation for JEnK in terms of the charge density q. To this end, we first
take the gradient of (C 1) with respect to x0 to obtain integral equations for the electric
field in both fluid phases:

E(x0) = E0 −
∫

C
JEn(x)K∇0Ga ds(x) for x0 ∈ V, (C 3a)
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Ē(x0) = E0 −
∫

C
JEn(x)K∇0Ga ds(x) for x0 ∈ V̄. (C 3b)

The derivative of the Green’s function undergoes a discontinuity across the interface,
which needs to be accounted for when the evaluation point is on the boundary
(Pozrikidis 2011), leading to the following expressions on the drop surface:

E(x0) = E0 −
∫

C
JEn(x)K∇0Ga ds(x)+ 1

2JEn(x0)Kn(x0) for x0 ∈C, (C 4a)

Ē(x0) = E0 −
∫

C
JEn(x)K∇0Ga ds(x)− 1

2JEn(x0)Kn(x0) for x0 ∈C. (C 4b)

These equations are singular at x= x0, though the singularity disappears after taking
the dot product with the normal n(x0). An integral equation for the jump can then
be obtained by summing both equations and combining them with Gauss’s law (2.4),
which is written q= En −QĒn in dimensionless form. After manipulations, it reads∫

C
JEn(x)K[n(x0) · ∇0Ga]ds(x)− 1+Q

2(1−Q)
JEn(x0)K= En

0(x0)− q(x0)

1−Q
. (C 5)

This can be solved for JEnK, from which En and Ēn are deduced using Gauss’s law
as

En = q−QJEnK
1−Q

, Ēn = q− JEnK
1−Q

. (C 6a,b)

The tangential component of the electric field can then be obtained by evaluating (C 3),
though care must be taken to treat the integral singularity (Sellier 2006). Another
approach, which we adopt here, consists in evaluating the potential ϕ using (C 1),
which is only weakly singular, and then differentiating it numerically along the curve
C to obtain Et.

Once both normal and tangential components of the electric field are known, they
can be used to determine the jump in electric tractions J f EK using (2.9), from which
we infer the jump in hydrodynamic tractions J f HK using the stress balance (2.7).
Hydrodynamic tractions then enter the Stokes boundary integral equation for the fluid
velocity v (Pozrikidis 1992), which for an axisymmetric domain reads

v(x0) = − 1
4πMa(1+ λ)

∫
C
J f H(x)K ·G a(x; x0) ds(x)

+ 1− λ
4π(1+ λ)

∫
C

v(x) · T a(x; x0) · n(x) ds(x), (C 7)

where G a and T a are the axisymmetric Green’s functions for the Stokeslet and
stresslet, respectively:

G a(x; x0)=
∫ 2π

0

(
I

r
+ rr

r3

)
dφ, T a(x; x0)=

∫ 2π

0
−6

rrr
r5

dφ. (C 8a,b)

The exact expressions for these functions are very cumbersome but can be found in
Pozrikidis (1992, 2002). The integral (C 7), which is valid in both fluid domains and
on the interface, can be inverted to determine the interfacial velocity, which is then
used to update the drop shape and charge distribution.

The complete algorithm can be summarized as follows:
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(i) Given a surface charge distribution q(x), compute JEnK, En and Ēn by solution
of the integral equation (C 5) together with (C 6).

(ii) Determine the surface potential ϕ by evaluation of (C 1).
(iii) Differentiate the surface potential ϕ numerically along the interface to obtain the

tangential electric field Et =−∇sϕ.
(iv) Knowing both components of the electric field, calculate the jump in electric

tractions J f EK using (2.9), and use it to determine the jump in hydrodynamic
tractions J f HK using the stress balance (2.7).

(v) Solve the Stokes boundary integral equation (C 7) to obtain the interfacial
velocity.

(vi) Update the charge distribution q(x) by time marching of the charge conservation
equation (2.5) using an explicit scheme.

(vii) Update the position of the interface by advecting the mesh with the normal
component of the interfacial velocity using the same time-marching scheme as
in (vi).

In all simulations, the drop shape is taken to be initially spherical, and the
initial surface charge is uniformly zero. We use spline interpolation to represent
the shape of the interface, which allows for an easy and accurate determination of
geometric properties such as the normal and tangential vectors and surface curvature,
and for accurate evaluation of surface integrals. The charge conservation equation,
however, is discretized using a finite-volume scheme (LeVeque 2002), which has
better conservation properties and is also more adequate for capturing sharp gradients
as arise in strong fields (figures 4 and 5); this distinguishes our method from that of
Lanauze et al. (2015), which uses splines for both the drop shape and surface charge
distribution.

REFERENCES

ABRAMOWITZ, M. & STEGUN, I. A. 1972 Handbook of Mathematical Functions: with Formulas,
Graphs, and Mathematical Tables. Dover.

AJAYI, O. O. 1978 A note on Taylor’s electrohydrodynamic theory. Proc. R. Soc. Lond. A 364,
499–507.

ALLAN, R. S. & MASON, S. G. 1962 Particle behaviour in shear and electric fields. I. Deformation
and burst of fluid drops. Proc. R. Soc. Lond. A 267, 45–61.

ANDERSON, J. L. 1985 Droplet interactions in thermocapillary motion. Intl J. Multiphase Flow 11,
813–824.

BANDOPADHYAY, A., MANDAL, S., KISHORE, N. K. & CHAKRABORTY, S. 2016 Uniform electric-
field-induced lateral migration of a sedimenting drop. J. Fluid Mech. 792, 553–589.

BASARAN, O. A., GAO, H. & BHAT, P. P. 2013 Nonstandard inkjets. Annu. Rev. Fluid Mech. 45,
85–113.

BAYGENTS, J. C., RIVETTE, N. J. & STONE, H. A. 1998 Electrohydrodynamic deformation and
interaction of drop pairs. J. Fluid Mech. 368, 359–375.

CASTELLANOS, A. 2014 Electrohydrodynamics. Springer.
COLLINS, R. T., JONES, J. J., HARRIS, M. T. & BASARAN, O. A. 2008 Electrohydrodynamic tip

streaming and emission of charged drops from liquid cones. Nat. Phys. 4, 149–154.
COLLINS, R. T., SAMBATH, K., HARRIS, M. T. & BASARAN, O. A. 2013 Universal scaling laws

for the disintegration of electrified drops. Proc. Natl Acad. Sci. USA 110, 4905–4910.
DAS, D. & SAINTILLAN, D. 2013 Electrohydrodynamic interaction of spherical particles under Quincke

rotation. Phys. Rev. E 87, 043014.
ESMAEELI, A. & SHARIFI, P. 2011 Transient electrohydrodynamics of a liquid drop. Phys. Rev. E

84, 036308.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.704
Downloaded from http:/www.cambridge.org/core. IP address: 174.65.37.72, on 30 Nov 2016 at 04:06:08, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.704
http:/www.cambridge.org/core


252 D. Das and D. Saintillan

FENG, J. Q. 1999 Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric
field at finite electric Reynolds number. Proc. R. Soc. Lond. A 455, 2245–2269.

HA, J.-W. & YANG, S.-M. 2000 Deformation and breakup of Newtonian and non-Newtonian
conducting drops in an electric field. J. Fluid Mech. 405, 131–156.

HARRIS, F. E. & O’KONSKI, C. T. 1957 Dielectric properties of aqueous ionic solutions at microwave
frequencies. J. Phys. Chem. 61, 310–319.

HAYWOOD, R. J., RENKSIZBULUT, M. & RAITHBY, G. D. 1991 Transient deformation of freely-
suspended liquid droplets in electrostatic fields. AIChE J. 37, 1305–1317.

HE, H., SALIPANTE, P. F. & VLAHOVSKA, P. M. 2013 Electrorotation of a viscous droplet in a
uniform direct current electric field. Phys. Fluids 25, 032106.

HUANG, Z.-M., ZHANG, Y.-Z., KOTAKI, M. & RAMAKRISHNA, S. 2003 A review on polymer
nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol.
63, 2223–2253.

JASWON, M. A. 1963 Integral equation methods in potential theory. I. Proc. R. Soc. Lond. A 275,
23–32.

JOSEPH, D. D. 1967 Parameter and domain dependence of eigenvalues of elliptic partial differential
equations. Arch. Rat. Mech. Anal. 24, 325–351.

KIM, S. & KARRILA, S. J. 2013 Microhydrodynamics: Principles and Selected Applications. Dover.
LAC, E. & HOMSY, G. M. 2007 Axisymmetric deformation and stability of a viscous drop in a

steady electric field. J. Fluid Mech. 590, 239–264.
LANAUZE, J. A., WALKER, L. M. & KHAIR, A. S. 2013 The influence of inertia and charge

relaxation on electrohydrodynamic drop deformation. Phys. Fluids 25, 112101.
LANAUZE, J. A., WALKER, L. M. & KHAIR, A. S. 2015 Nonlinear electrohydrodynamics of slightly

deformed oblate drops. J. Fluid Mech. 774, 245–266.
LASER, D. J. & SANTIAGO, J. G. 2004 A review of micropumps. J. Micromech. Microengng 14,

R35.
LEVEQUE, R. J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.
LÓPEZ-HERRERA, J. M., POPINET, S. & HERRADA, M. A. 2011 A charge-conservative approach

for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J. Comput. Phys.
230, 1939–1955.

MELCHER, J. R. & TAYLOR, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial
shear stresses. Annu. Rev. Fluid Mech. 1, 111–146.

MORIYA, S., ADACHI, K. & KOTAKA, T. 1986 Deformation of droplets suspended in viscous media
in an electric field. I. Rate of deformation. Langmuir 2, 155–160.

O’KONSKI, C. T. & THACHER, H. C. 1953 The distortion of aerosol droplets by an electric field.
J. Phys. Chem. 57, 955–958.

PARK, J.-U., HARDY, M., KANG, S. J., BARTON, K., ADAIR, K., MUKHOPADHYAY, D. K., LEE, C.
Y., STRANO, M. S., ALLEYNE, A. G., GEORGIADIS, J. G., FERREIRA, P. M. & ROGERS,
J. A. 2007 High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782–789.

PELEKASIS, N. A., TSAMOPOULOS, J. A. & MANOLIS, G. D. 1990 Equilibrium shapes and stability
of charged and conducting drops. Phys. Fluids 2, 1328–1340.

POZRIKIDIS, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow.
Cambridge University Press.

POZRIKIDIS, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library
BEMLIB. CRC Press.

POZRIKIDIS, C. 2011 Introduction to Theoretical and Computational Fluid Dynamics. Oxford
University Press.

RALLISON, J. 1984 The deformation of small viscous drops and bubbles in shear flows. Annu. Rev.
Fluid Mech. 16, 45–66.

SALIPANTE, P. F. & VLAHOVSKA, P. M. 2010 Electrohydrodynamics of drops in strong uniform dc
electric fields. Phys. Fluids 22, 112110.

SALIPANTE, P. F. & VLAHOVSKA, P. M. 2013 Electrohydrodynamic rotations of a viscous droplet.
Phys. Rev. E 88, 043003.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.704
Downloaded from http:/www.cambridge.org/core. IP address: 174.65.37.72, on 30 Nov 2016 at 04:06:08, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.704
http:/www.cambridge.org/core


Nonlinear small-deformation theory for droplet electrohydrodynamics 253

SAVILLE, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev.
Fluid Mech. 29, 27–64.

SCOTT, T. C. 1989 Use of electric fields in solvent extraction: a review and prospectus. Sep. Purif.
Meth. 18, 65–109.

SELLIER, A. 2006 On the computation of the derivatives of potentials on a boundary by using
boundary-integral equations. Comput. Meth. Appl. Mech. Engng 196, 489–501.

SHERWOOD, J. D. 1988 Breakup of fluid droplets in electric and magnetic fields. J. Fluid Mech.
188, 133–146.

SHKADOV, V. Y. & SHUTOV, A. A. 2002 Drop and bubble deformation in an electric field. Fluid
Dyn. 37, 713–724.

SHUTOV, A. A. 2002 The shape of a drop in a constant electric field. Tech. Phys. 47, 1501–1508.
SUPEENE, G., KOCH, C. R. & BHATTACHARJEE, S. 2008 Deformation of a droplet in an electric

field: nonlinear transient response in perfect and leaky dielectric media. J. Colloid Interface
Sci. 318, 463–476.

SYMM, G. T. 1963 Integral equation methods in potential theory. II. Proc. R. Soc. Lond. A 275,
33–46.

TAYLOR, G. I. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280,
383–397.

TAYLOR, G. I. 1966 Studies in electrohydrodynamics. I. The circulation produced in a drop by
electrical field. Proc. R. Soc. Lond. A 291, 159–166.

TAYLOR, G. I. 1969 Electrically driven jets. Proc. R. Soc. Lond. A 313, 453–475.
TSAMOPOULOS, J. A., AKYLAS, T. R. & BROWN, R. A. 1985 Dynamics of charged drop break-up.

Proc. R. Soc. Lond. A 401, 67–88.
TSUKADA, T., KATAYAMA, T., ITO, Y. & HOZAWA, M. 1993 Theoretical and experimental studies

of circulations inside and outside a deformed drop under a uniform electric field. J. Chem.
Engng Japan 26, 698–703.

WILSON, C. T. R. & TAYLOR, G. I. 1925 The bursting of soap-bubbles in a uniform electric field.
Math. Proc. Cambridge Philos. Soc. 22, 728–730.

YARIV, E. & ALMOG, Y. 2016 The effect of surface-charge convection on the settling velocity of
spherical drops in a uniform electric field. J. Fluid Mech. 797, 536–548.

YARIV, E. & FRANKEL, I. 2016 Electrohydrodynamic rotation of drops at large electric Reynolds
numbers. J. Fluid Mech. 788, R2.

ZHANG, J., ZAHN, J. D. & LIN, H. 2013 Transient solution for droplet deformation under electric
fields. Phys. Rev. E 87, 043008.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.704
Downloaded from http:/www.cambridge.org/core. IP address: 174.65.37.72, on 30 Nov 2016 at 04:06:08, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.704
http:/www.cambridge.org/core

	A nonlinear small-deformation theory for transient droplet electrohydrodynamics
	Introduction
	Problem formulation
	Problem solution by domain perturbation
	Shape parametrization and expansion
	Electric problem
	Spherical harmonic expansion
	Charge conservation and moment equations

	Flow problem: streamfunction formulation
	Kinematic boundary condition
	Dynamic boundary condition
	Electric and hydrodynamic stresses
	Stress balance

	Nonlinear charge convection

	Summary of the small-deformation theory
	Taylor deformation parameter
	First-order theory
	Second-order theory

	Results and discussion
	Effect of transient charge relaxation and shape deformation
	Effect of nonlinear charge convection

	Concluding remarks
	Acknowledgements
	Appendix A. Expansion coefficients for the electric problem
	Appendix B. Expansion coefficients for the flow problem
	Appendix C. Axisymmetric boundary element method
	References




