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Electrohydrodynamic interaction of spherical particles under Quincke rotation
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Weakly conducting dielectric particles suspended in a dielectric liquid of higher conductivity can undergo a
transition to spontaneous sustained rotation when placed in a sufficiently strong dc electric field. This phenomenon
of Quincke rotation has interesting implications for the rheology of these suspensions, whose effective viscosity
can be controlled and reduced by application of an external field. While previous models based on the rotation of
isolated particles have provided accurate estimates for this viscosity reduction in dilute suspensions, discrepancies
have been reported in more concentrated systems where particle-particle interactions are likely significant.
Motivated by this observation, we extend the classic description of Quincke rotation based on the Taylor-Melcher
leaky dielectric model to account for pair electrohydrodynamic interactions between two identical spheres using
the method of reflections. A coupled system of evolution equations for the dipole moments and angular velocities
of the spheres is derived that accounts for electric dipole-dipole interactions and hydrodynamic rotlet interactions
up to order O(R−5), where R is the separation distance between the spheres. A linear stability analysis of this
system shows that interactions modify the value of the critical electric field for the onset of Quincke rotation: both
electric and hydrodynamic interactions can either stabilize or destabilize the system depending on the orientation
of the spheres, but the leading effect of interactions on the onset of rotation is hydrodynamic. We also analyze the
dynamics in the nonlinear regime by performing numerical simulations of the governing equations. In the case of
a pair of spheres that are fixed in space, we find that particle rotations always synchronize in magnitude at long
times, though the directions of rotation of the spheres need not be the same. The steady-state angular velocity
magnitude depends on the configuration of the spheres and electric field strength and agrees very well with an
asymptotic estimate derived for corotating spheres. In the case of freely-suspended spheres, dipolar interactions
are observed to lead to a number of distinct behaviors depending on the initial relative configuration of the spheres
and on any infinitesimal initial perturbation introduced in the system: in some cases the spheres slowly separate
in space while steadily rotating, while in other cases they pair up and either corotate or counterrotate depending
on their orientation relative to the field.
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I. INTRODUCTION

Electrorheological (ER) fluids, or collections of fine di-
electric particles suspended in a dielectric liquid [1–4], are
commonly used in a wide range of technological applications
such as hydraulic valves [5] and clutches, brakes [6], shock
absorbers [7], as well as in various microfluidic devices [8–10].
When placed in an electric field, the particles in an ER fluid
polarize and interact, causing them in most cases to form
chains and larger aggregation patterns in the direction of
the field [1,11–14], thereby strongly enhancing the effective
viscosity of the suspension. The formation of these internal
structures is reversible and can be suppressed upon switching
off of the field, offering an easy way of controlling the
rheological properties of the fluid in real time. This so-called
positive ER effect, by which chaining in the field direction
results in a viscosity increase, is generally observed when the
conductivity σ2 of the suspended particles is larger than that of
the carrier liquid, denoted by σ1. The situation is quite different
when σ1 > σ2, where chains and sheets of particles have been
reported to form in directions perpendicular to the electric field
and can result in an effective decrease in the apparent viscosity
of the suspension [15].

Under certain conditions, application of a steady uniform
electric field can also drive the spontaneous rotation of
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spherical particles. This peculiar phenomenon was first dis-
covered by Weiler [16] and Quincke [17] in the late nineteenth
century, and has later become known as Quincke rotation.
Detailed models for this effect were subsequently developed
by Cebers [18] and Jones [19], who used Melcher and Taylor’s
leaky dielectric model [20,21] and identified the following
mechanism for Quincke rotation. As depicted in Fig. 1, the
sign of the dipole induced in a spherical particle placed in a
uniform electric field depends on the properties of the particle
and liquid phases. If the ratio of the dielectric permittivity to
the conductivity of the material is larger in the suspending
liquid than inside the particle, the induced dipole is parallel
to the direction of the applied field; if it is less, the induced
dipole is antiparallel. This ratio τ = ε/σ also corresponds
to the characteristic relaxation time for the surface charge
distribution on the surface of the particle upon application of
the field. If the orientation of the sphere is weakly perturbed, a
mechanical torque arises as a result of the Maxwell stress in the
fluid, which is restoring in the first case but destabilizing in the
second case. If the electric field is strong enough to overcome
the effect of the viscous torque on the particle, this can result in
the steady spontaneous rotation of the particle with a constant
angular velocity around an arbitrary axis perpendicular to the
direction of the applied field. To summarize, Quincke rotation
occurs if

ε2

σ2
>

ε1

σ1
, (1)
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FIG. 1. (Color online) Polarization of a spherical particle in an
applied electric field E0. (Left) If the charge relaxation time τ2 =
ε2/σ2 of the particle is less than that, τ1 = ε1/σ1, of the suspending
fluid, the induced dipole P is parallel to the applied field; (right) if it
is greater, the induced dipole is antiparallel (after Ref. [19]).

which is to say that the characteristic charge relaxation time
is larger inside the particle than outside, and if the electric
field strength exceeds a critical value Ec whose expression
will be derived in Sec. II A in terms of material properties. A
full stability analysis of the dynamical system shows that the
onset of Quincke rotation is associated with a supercritical
pitchfork bifurcation. If particle inertia is significant, the
dynamics of the system are formally identical to those of the
classic Lorenz oscillator [22], and further increasing the field
strength therefore eventually leads to a second bifurcation to
unsteady chaotic dynamics [23], as has also been observed
in experiments [24]. Spontaneous electrorotation followed by
complex deformation dynamics has also been reported in
experiments on weakly conducting droplets suspended in a less
conducting fluid when placed in a strong electric field [25–28].

Quincke electrorotation in large-scale suspensions has
interesting consequences for the effective rheology of the sus-
pensions [29–35]. When an external shear flow is applied (for
instance in a Couette device or in pressure-driven Poiseuille
flow) together with a sufficiently strong external electric field
in the flow gradient direction, Quincke rotation arises in the
same direction as the external flow vorticity and thereby
effectively decreases the apparent viscosity of the suspension.
This effect, which is easy to interpret theoretically [34,36,37],
has been observed in a number of experiments in both Couette
and pressure-driven flow setups [29–33]. An increase in the
effective electric conductivity of the suspension has also been
observed [38,39]. While experiments show fairly good agree-
ment with simple dilute theoretical predictions for the change
in viscosity in sufficiently strong flows of dilute suspensions
[30], departures from these predictions have been reported at
low shear rates and high concentrations, presumably as a result
of particle-particle electrohydrodynamic interactions, which
may cause structuring of the suspension in the form of chains
or other types of aggregates as in previously studied ER fluids.

Particle-particle interactions in Quincke rotation have only
received limited attention up to now, in part owing to the
strongly nonlinear nature of the governing set of equations,

which will be described below. In early work, Wan et al. [40]
considered the electrostatic interaction of a pair of dielectric
spheres, and derived the induced dipoles in both spheres
using bispherical coordinates. They then used this result to
evaluate the mean force on a particle when one of the two
spheres was rotated at a constant angular velocity around
the other one. Their study, however, did not account for the
change in polarization of the particles as a result of Quincke
rotation nor for the effect of hydrodynamic interactions. More
recently, a significantly more detailed analysis was proposed
by Dolinsky and Elperin [41], who used a somewhat similar
treatment as in the present work. They applied the method of
reflections to analyze Quincke rotation of a pair of spheres
in an external field. They derived expressions for the induced
electric dipoles in both spheres that accounted for electric
interactions as well as particle rotations, and used these
expressions to draw conclusions on the effect of interactions
on the angular velocity of the spheres and electric forces due
to dipole-dipole interactions. Their study, however, entirely
neglected hydrodynamic interactions due to the rotation and
motion of the spheres; these interactions, as we show below,
are as important as electric interactions as they modify the
induced dipoles and resulting angular velocities at the same
asymptotic order.

In the present paper, we describe a detailed asymptotic
analysis of the effects of both electric and hydrodynamic
interactions on Quincke rotation of a pair of identical spheres
suspended in an unbounded domain when a uniform external
electric field is applied. The details of the model, which is
based on the leaky dielectric model of Melcher and Taylor [20]
and extends previous classic studies of Quincke rotation of
isolated particles [18,19], are presented in Sec. II, where a
set of coupled nonlinear ordinary differential equations for
the dipole moments and angular velocities of the two spheres
are derived using the method of reflections [42] and are valid
to order O(R−5), where R denotes the distance between the
two spheres. This set of equations is then used to study the
stability of the system in Sec. III, where a linear stability
analysis shows that interactions can either increase or decrease
the value of the critical electric field for onset of rotation
depending on the configuration of the spheres. Finally, we
also carry out numerical simulations of both fixed and freely
suspended spheres in Sec. IV, and show that interactions lead
to synchronization of the particle rotations and either pairing
or separation of the two particles depending on their initial
configuration and on the infinitesimal perturbation introduced
in the system at t = 0. We conclude in Sec. V.

II. THEORETICAL MODEL

A. Single sphere in a nonuniform field

1. Governing equations and moment equations

We first analyze in detail the case of a single isolated
sphere of radius a placed in an infinite liquid and subject
to a nonuniform external electric field Ee(x) = −∇φe(x) as
depicted in Fig. 2. Denote by (ε1,σ1) the permittivity and
conductivity of the suspending liquid, and by (ε2,σ2) those
of the particle. We adopt a coordinate system with the origin
at the center of the sphere, and we assume that the external

043014-2



ELECTROHYDRODYNAMIC INTERACTION OF SPHERICAL . . . PHYSICAL REVIEW E 87, 043014 (2013)

Ee(x) 

liquid 
(ε1,σ1,η) 

solid 
(ε2,σ2) 

x

O 

Ω

FIG. 2. (Color online) Isolated sphere undergoing Quincke rota-
tion in a nonuniform external field Ee(x).

potential φe(x) in the absence of the sphere can be expanded
in a Taylor series about the origin as

φe(x) = φe(0) + x · ∇φe(0) + 1
2 xx : ∇∇φe(0) + · · · , (2)

where we neglect higher-order terms in this discussion for
reasons that will become clear in Sec. II B. The presence of
the sphere perturbs the external potential as

φ(x) =
{

φ+(x) = φe(x) + φ+
d (x) if |x| > a,

φ−(x) = φe(x) + φ−
d (x) if |x| < a,

(3)

where we wish to determine the disturbance potentials φ+
d (x)

and φ−
d (x) outside and inside the sphere, respectively.

Following the classic Taylor-Melcher leaky dielectric
model [20,21], which was also used in previous studies of
Quincke rotation [18,19], we assume that any induced charge
in the system is concentrated at the interface between the solid
and liquid in the form of a surface charge distribution q(x),
which is related to the normal jump in the electric displacement
field across the interface via Gauss’s law [43],

q(x) = n · �εE(x)� = −n · [ε1∇φ+(x) − ε2∇φ−(x)], (4)

where n = x/x is a unit outward normal on the particle surface.
Under this assumption, both disturbance potentials satisfy
Laplace’s equation since there is no net charge in the solid
and liquid away from the interface

∇2φ+
d (x) = ∇2φ−

d (x) = 0. (5)

This will allow us to seek solutions as expansions in spherical
harmonics below. Boundary conditions on the potentials are
as follows. First, the disturbance potential outside the sphere
must decay far away from the surface:

φ+
d (x) → 0 as |x| → ∞. (6)

Second, the potential must be continuous across the interface:

φ+
d (x) = φ−

d (x) if |x| = a. (7)

The third boundary condition expresses charge conservation
on the interface as a result of Ohmic currents from the bulk
and charge convection by the moving surface:

∂q

∂t
+ n · �J� + ∇s · (qV) = 0 at |x| = a. (8)

In Eq. (8), n · �J� denotes the normal jump in Ohmic current
across the interface:

n · �J(x)� = n · �σE(x)� = −n · [σ1∇φ+(x) − σ2∇φ−(x)].

(9)

Also, ∇s = (I − nn) · ∇ is the surface divergence operator,
and V is the velocity of a point on the sphere surface, which is
assumed to be rotating at a yet unknown angular velocity �:
V = � × an.

Solutions of Eq. (5) for the disturbance potentials outside
and inside the sphere can be written as expansions in decaying
and growing spherical harmonics, respectively,

φ+
d (x) = x · P

x3
+ 1

2

xx : Q
x5

+ · · · , (10)

φ−
d (x) = x · P

a3
+ 1

2

xx : Q
a5

+ · · · , (11)

which automatically satisfy the two boundary conditions of
Eqs. (6) and (7). In Eqs. (10) and (11), vector P denotes the
dipole moment on the sphere, and second-order tensor Q
denotes the quadrupole moment. We do not include any
monopole in the expansions as the sphere is assumed to
carry no net charge. Higher-order multipoles could also be
included, though we will not consider them here as these will
be negligible in the study of pair interactions in Sec. II B.
Substituting these expansions into the charge conservation
equation (8) allows one to derive evolution equations for the
moments P and Q as

dP
dt

= � × [P + a3ε21∇φe(0)] − 1

τMW
[P + a3σ21∇φe(0)],

(12)

dQ
dt

= � × [Q + a5ε′
21∇∇φe(0)]

− 1

τ ′
MW

[Q + a5σ ′
21∇∇φe(0)], (13)

where τMW and τ ′
MW are the first and second Maxwell-Wagner

relaxation times,

τMW = ε2 + 2ε1

σ2 + 2σ1
, τ ′

MW = 2ε2 + 3ε1

2σ2 + 3σ1
, (14)

and where we have introduced the following dimensionless
parameters:

ε21 = ε2 − ε1

ε2 + 2ε1
, ε′

21 = ε2 − ε1

2ε2 + 3ε1
,

(15)
σ21 = σ2 − σ1

σ2 + 2σ1
, σ ′

21 = σ2 − σ1

2σ2 + 3σ1
.

In Eq. (13), the notations � × Q and � × ∇∇φe(0) are used
to denote the following two tensors in index notation:

[� × Q]ij = εikl�kQlj ,

[� × ∇∇φe(0)]ij = εikl�k

∂2φe

∂xl∂xj

(0). (16)

Equation (12) for the dipole moment P differs slightly from
the dipole evolution equation appearing in previous studies of
Quincke rotation [34,35], through the presence of the term
involving � × ∇φe(0). This discrepancy is easily resolved
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by realizing that the dipole P appearing in Eq. (12) is
the total dipole moment on the particle, whereas previous
studies have typically focused on the retarding dipole moment
defined as Pr = P − P∞, where P∞ = −a3ε21∇φe(0) is the
instantaneous polarization. From Eq. (12), it is straightforward
to recover the commonly used equation for Pr

dPr

dt
= � × Pr − 1

τMW
[Pr − a3(ε21 − σ21)∇φe(0)]. (17)

Similarly, an equation can be written for the retard-
ing quadrupole moment Qr = Q − Q∞ where Q∞ =
−a5ε′

21∇∇φe(0) as

dQr

dt
= � × Qr − 1

τ ′
MW

[Qr − a5(ε′
21 − σ ′

21)∇∇φe(0)]. (18)

For the purpose of studying Quincke rotation, it is equivalent
to use (P,Q) or (Pr ,Qr ), as we will see below that the
instantaneous dipole and quadrupole moments P∞ and Q∞ do
not contribute to the electric torque on the particle. In this work,
we make the choice of working with the total moments P and
Q, which satisfy Eqs. (12) and (13). The physical interpretation
of Eqs. (12) and (13) is straightforward: the retarding parts
of the dipole and quadrupole moments are subject to the
rotation of the particle with angular velocity �, while the
total dipole and quadrupole simultaneously relax toward their
steady-state values in the absence of rotation. The time scales
for these relaxation processes are given by the Maxwell-
Wagner relaxation times of Eq. (14). It is also easy to see
how additional equations for higher multipole moments could
be obtained, though we do not include them here. It should
be noted that the set of uncoupled equations (12) and (13) for
the multipolar moments is a direct consequence of the leaky
dielectric model and in particular of the boundary condition of
Eq. (8) for the surface charge conservation; more sophisticated
statistical mechanical models for dielectric relaxation based
on a Fokker-Planck equation for the probability distribution of
noninteracting polar molecules have suggested that a coupling
between multipolar moments may in fact exist [44,45], though
we do not include it here.

2. Balance of angular momentum

In the above discussion, we have assumed that the sphere is
rotating at a given angular velocity �, which is still unknown.
To determine �, we write down the angular momentum
balance for the sphere, which is subject to both viscous and
electric torques,

I
d�

dt
= −8πηa3� + Te. (19)

Here, I = 2ma3/5 is the moment of inertia of a sphere of mass
m, η is the viscosity of the suspending liquid, and Te is the
electric torque on the particle. Both the dipole and quadrupole
moments can contribute to the electric torque, which was
previously calculated by Jones and Washizu [46] as

Te = −4πε1[P × ∇φe(0) + (Q · ∇) × ∇φe(0)], (20)

or, in index notation,

T e
i = −4πε1

[
εijkPj

∂φe

∂xk

(0) + εijkQjl

∂2φe

∂xl∂xk

(0)

]
. (21)

From this expression, it is easy to see that the instantaneous
dipole and quadrupole moments, which are collinear with
∇φe(0) and ∇∇φe(0), respectively, do not result in any torque
on the particle.

In this paper, we focus on the inertialess limit where the
left-hand side in Eq. (19) is negligible. In this case, the
angular momentum balance simplifies to the following relation
between angular velocity and multipole moments:

2ηa3� + ε1[P × ∇φe(0) + (Q · ∇) × ∇φe(0)] = 0. (22)

Equations (12) and (13), together with Eq. (22), constitute a
coupled system of equations for P, Q, and �, which can be
analyzed or integrated numerically given an initial condition.

3. Steady-state solutions

We first seek steady-state solutions to this system of equa-
tions, with the aim of determining conditions for spontaneous
steady rotation to arise. At steady state, Eqs. (12) and (13) for
the dipole and quadrupole moments reduce to

� × P − 1

τMW
P = a3σ21

τMW
∇φe(0) − a3ε21� × ∇φe(0), (23)

� × Q − 1

τ ′
MW

Q = a3σ ′
21

τ ′
MW

∇∇φe(0) − a3ε′
21� × ∇∇φe(0).

(24)

These two equations admit analytical solutions for P and Q,

P = A1[� × ∇φe(0) + τMW(� · ∇φe(0))�] − A2∇φe(0),

(25)

Q = A3[� × ∇∇φe(0) + τ ′
MW(� · ∇∇φe(0))�]

−A4∇∇φe(0), (26)

where the coefficients A1 through A4 are given by

A1 = a3τMW(ε21 − σ21)

1 + �2τ 2
MW

, A2 = a3

[
ε21 + σ21 − ε21

1 + �2τ 2
MW

]
,

(27)

A3 = a3τ ′
MW(ε′

21 − σ ′
21)

1 + �2τ ′2
MW

, A4 = a3

[
ε′

21 + σ ′
21 − ε′

21

1 + �2τ ′2
MW

]
.

(28)

Finally, substituting Eqs. (25) and (26) into the torque bal-
ance Eq. (22) yields a nonlinear equation for the angular
velocity �.

Obtaining an exact analytical expression for � or its norm
when the electric field is nonuniform (i.e., when ∇∇φe(0) �= 0)
is not straightforward, though Eq. (22) could still be used
in numerical simulations. However, the case of a uniform
field can be further analyzed. If ∇∇φe(0) = 0 and Q = 0,
the equation for � simplifies to

2ηa3� + ε1A1[� × ∇φe + τMW(� · ∇φe)�] × ∇φe = 0.

(29)

Taking the dot product of Eq. (29) with the local potential
gradient ∇φe immediately yields

� · ∇φe = 0, (30)
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i.e., any particle rotation will have an angular velocity �

normal to the direction of the external field. The exact direction
of rotation is however indeterminate. The magnitude of the
angular velocity can be obtained by taking the dot product of
Eq. (29) with �

2ηa3�2 − ε1A1�
2E2

e = 0, (31)

where we have introduced the magnitude of the external
electric field Ee = −∇φe. Using Eq. (27) for A1, which is
itself a function of �2, we obtain a biquadratic equation for
� = |�|,

�2

[
�2τ 2

MW + 1 − ε1τMW(ε21 − σ21)

2η
E2

e

]
= 0. (32)

The solution � = 0 always exists and corresponds to the
absence of rotation. However, another solution is also
given by

� = ± 1

τMW

√(
Ee

Ec

)2

− 1, with

Ec =
√

2η

ε1τMW(ε21 − σ21)
. (33)

This solution, which is the same as that obtained in previous
studies of Quincke rotation [19], only arises when the value
of the external field Ee exceeds the critical value Ec. The
solutions are plotted in Fig. 3, where we see that the steady
solution with � = 0 bifurcates at Ee = Ec. From the definition
of Ec, it is clear that Quincke rotation can only occur if ε21 >

σ21, which is easily shown to be equivalent to
ε2

σ2
>

ε1

σ1
, (34)

in agreement with the physical interpretation provided in
Sec. I.

A linear stability analysis of the dynamical system shows
that the onset of Quincke rotation corresponds to a supercritical
pitchfork bifurcation, and that the steady solution loses its
stability when Ee > Ec. In experiments, spontaneous rotation
is expected to take place in this case, around an arbitrary

-3

-2

-1

0

1

2

3

τ M
W

Ω

3.02.52.01.51.00.50.0
Ee/Ec

 stable branch
 unstable branch

FIG. 3. (Color online) Stability diagram for the angular velocity
magnitude of a single sphere. A supercritical pitchfork bifurcation
occurs at Ee = Ec; above this value, the solution � = 0 becomes
unstable and spontaneous rotation occurs with an angular velocity
given by Eq. (33).

x1

O 

Ω1

Ω2

x2

RE0 = E0z ^
Θ 

FIG. 4. (Color online) Interaction of two identical spheres under-
going Quincke rotation in a uniform field E0.

direction perpendicular to the field direction and with an
angular velocity magnitude given by Eq. (33). In the absence
of particle inertia, the two branches defined by Eq. (33) are
stable for any field strength satisfying Ee > Ec. If inertia
is retained in the angular momentum balance of Eq. (19),
previous studies have shown that the governing equations for
P and � can be reduced to the Lorenz oscillator equations [22],
and that a transition to chaos therefore occurs in very strong
fields [23,24].

B. Two spheres in a uniform field

1. Electric problem

We now consider the case of two identical spheres separated
by a vector R = x2 − x1 and placed in a uniform electric field
E0 as depicted in Fig. 4. We also define the notations R = |R|
and R̂ = R/R. We wish to analyze the leading-order effect of
electric and hydrodynamic interactions between the spheres
based on the single-particle results derived in Sec. II A and
using the method of reflections. Note that because the spheres
perturb the electric field around them, they really experience a
nonuniform field as a result of interactions. First, each sphere
polarizes under the field, and develops a dipole moment Pα

(with α = 1,2) obtained by a generalization of the dipole
relaxation equation (12). For sphere 1

dP1

dt
= �1 × [

P1 + a3ε21∇φ1
e (x1)

]
− 1

τMW

[
P1 + a3σ21∇φ1

e (x1)
]
, (35)

and a similar equation can also be written for the dipole
moment P2 of the second sphere. A relaxation equation
based on Eq. (13) can also be written for the quadrupole
moment Qα induced in each sphere, though we will show
below that it can be neglected to leading order. In Eq. (35),
∇φ1

e (x1) denotes the external electric field (up to a minus sign)
experienced by sphere 1. This electric field includes the applied
uniform field E0, as well as a correction arising from the
potential disturbance φ+2

d (x) induced by the various multipoles
generated inside sphere 2. To leading order, according to
Eq. (10)

φ+2
d (x) = (x − x2) · P2

|x − x2|3 + · · · , (36)

which can be expanded on the basis of growing spherical
harmonics near the center of sphere 1 to obtain the correction
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to the applied field. All calculations done, the potential gradient
∇φ1

e (x1) appearing in Eq. (35) can be shown to be of the form

∇φ1
e (x1) = −E0 + 1

R3
� · P2 + O(R−8), (37)

where we have introduced the second-order tensorial operator
� = I − 3R̂R̂. The error in Eq. (37), which arises from
neglecting the contributions of the quadrupole moment and
higher multipoles to the disturbance potential, can be estimated
to be of order O(R−8). Indeed, because the applied field is
uniform, the leading-order quadrupole moment induced inside
the spheres arises from the second gradient of the disturbance
potential φ+

d resulting from the dipole moments and is
therefore of order |Qα| = O(R−4) as can be seen from Eq. (36).
The quadrupole moment then adds an O(R−7) correction to
the disturbance potential [see Eq. (10)], corresponding to an
O(R−8) correction to the potential gradient in Eq. (37).

2. Torque balance

To determine the angular velocity �1 appearing in Eq. (35),
we consider the torque balance on sphere 1 in the inertialess
limit, where the angular velocity of sphere 1 is modified by the
hydrodynamic velocity u2(x) induced by the motion of sphere
2 [47],

Te
1 − 8πηa3

[
�1 − 1

2∇ × u2(x1)
] = 0. (38)

Here, Te
1 is the electric torque on sphere 1,

Te
1 = −4πε1P1 × ∇φ1

e (x1) + O(R−8), (39)

where ∇φ1
e (x1) is given in Eq. (37), and where we have

neglected the torque induced by the quadrupole moment [46].
To leading order, u2(x) is given by the rotlet flow driven by the
rotation of sphere 2 with angular velocity �2 [47],

u2(x) = a3�2 × (x − x2)

|x − x2|3 + O(R−5), (40)

with vorticity at the location of sphere 1 given by

∇ × u2(x1) = − a3

R3
� · �2 + O(R−6). (41)

The order of the error in Eqs. (40) and (41) can be understood
as follows: the rotlet flow u1 generated by sphere 1, which
scales like O(R−2) at the center of sphere 2, induces a stresslet
on sphere 2, whose magnitude scales with the gradient of u1 as
O(R−3) and adds a contribution to u2 in Eq. (40) that decays
like O(R−5). Substituting Eqs. (39) and (41) into the torque
balance Eq. (38) yields

�1 + a3

2R3
� · �2 = − ε1

2ηa3
P1 × ∇φ1

e (x1) + O(R−6), (42)

and a similar equation can be written for the torque balance on
sphere 2. These two coupled linear equations for �1 and �2

are easily solved analytically to leading order as

�1 = ε1

2ηa3

{
P1 ×

(
E0 − 1

R3
� · P2

)
− a3

2R3
� ·

[
P2 ×

(
E0 − 1

R3
� · P1

)]}
, (43)

�2 = ε1

2ηa3

{
P2 ×

(
E0 − 1

R3
� · P1

)
− a3

2R3
� ·

[
P1 ×

(
E0 − 1

R3
� · P2

)]}
, (44)

where the error in both equations is of order O(R−6). Note that
the last term in Eqs. (43) and (44) is itself of order O(R−6);
we retain it nonetheless as it is required for �1 = �2 = 0 to
be an exact steady solution of the equations derived here.

3. Force balance

In the case of two freely suspended particles, translational
motion is also expected to occur as a result of dielectrophoretic
forces on the particles. Such forces were previously analyzed
in detail using the method of reflections [42,46,48], and can
be expressed as

F1 = −4πε1

[
P1 · ∇∇φ1

e (x1) + 1

6
Q1 : ∇∇∇φ1

e (x1) + · · ·
]

,

(45)

with a similar expression for F2. To leading order, this
expression simplifies to

F1 = −12πε1

R4
[(P1 · R̂)P2 + (P2 · R̂)P1 + (P1 · P2)R̂

− 5(P1 · R̂)(P2 · R̂)R̂] + O(R−9), (46)

and by symmetry F2 = −F1. This dielectrophoretic force then
enters the force balance on the sphere. Neglecting inertia, the
force balance on sphere 1 is written

6πηa

[
U1 − u2(x1) − a2

6
∇2u2(x1)

]
= F1, (47)

where the translational velocity U1 of the sphere is also
modified by the flow field u2 induced by sphere 2 according to
Faxén’s law [47]. Noting that ∇2u2(x1) = O(R−7), this yields
the following expression for the particle velocities:

U1 = − a3

R2
�2 × R̂ + F1

6πηa
+ O(R−5), (48)

U2 = a3

R2
�1 × R̂ + F2

6πηa
+ O(R−5). (49)

In these equations, the leading-order error arises due to the
Stokeslet flows driven by forces F1 and F2, which modify
the velocities to order O(R−5) and could easily be included
for higher accuracy. The translational motion arises from two
different processes: first, the spheres are advected by the rotlet
flows they generate, which can lead to orbiting motions as
we will see in numerical simulations in Sec. IV B; second,
dielectrophoretic forces cause relative motions that can be
either attractive or repulsive depending on the orientation of
the electric dipoles on the spheres.
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4. Nondimensionalization and summary of the
governing equations

In the remainder of the paper, we scale all variables using
the particle radius a, Maxwell-Wagner relaxation time τMW,
and applied electric field strength E0 as characteristic scales
for length, time, and electric field, respectively. Under these
scalings, one dimensionless group appears in the equations,
which is the electric Mason number Ma characterizing the
ratio of viscous to polarization forces,

Ma = 2η

τMWε1E
2
0

. (50)

The Mason number is directly related to the ratio of the
applied field strength to the critical electric field E0

c for the
onset of Quincke rotation of a single particle in the absence of
interactions as

Ma = (ε21 − σ21)

(
E0

c

E0

)2

. (51)

After nondimensionalization, the governing equations can
be summarized as follows. The electric dipoles P1 and P2

satisfy the two coupled ordinary differential equations,

dP1

dt
= �1 ×

[
P1 + ε21

(
−̂z + 1

R3
� · P2

)]
−

[
P1 + σ21

(
−̂z + 1

R3
� · P2

)]
, (52)

dP2

dt
= �2 ×

[
P2 + ε21

(
−̂z + 1

R3
� · P1

)]
−

[
P2 + σ21

(
−̂z + 1

R3
� · P1

)]
. (53)

The angular velocities �1 and �2 can also be expressed in
terms of the dipole moments through the torque balance on
each sphere as

�1 = 1

Ma

{
P1 ×

(̂
z − 1

R3
� · P2

)
− 1

2R3
� ·

[
P2 ×

(̂
z − 1

R3
� · P1

) ]}
, (54)

�2 = 1

Ma

{
P2 ×

(̂
z − 1

R3
� · P1

)
− 1

2R3
� ·

[
P1 ×

(̂
z − 1

R3
� · P2

)]}
. (55)

Finally, if the spheres are freely suspended, their translational
velocities are given by

U1 = − 1

R2
�2 × R̂ − 4

Ma R4
[(P1 · R̂)P2 + (P2 · R̂)P1

+ (P1 · P2)R̂ − 5(P1 · R̂)(P2 · R̂)R̂], (56)

U2 = 1

R2
�1 × R̂ + 4

Ma R4
[(P1 · R̂)P2 + (P2 · R̂)P1

+ (P1 · P2)R̂ − 5(P1 · R̂)(P2 · R̂)R̂]. (57)

Equations (52) and (53) form a system of coupled nonlinear
ordinary differential equations for the dipole moments, that are
also coupled to Eqs. (54)–(57) for the angular and translational

motions of the spheres. This system of equations can analyzed
theoretically as we do next in Sec. III, or integrated numerically
as will be discussed in Sec. IV.

III. LINEAR STABILITY ANALYSIS

We first analyze the effects of electrohydrodynamic interac-
tions on the onset of Quincke rotation by performing a linear
stability analysis on the equations of Sec. II B4 in the case
where the two spheres are held fixed in space, so that the
separation vector R does not change in time and the spheres
only undergo rotational motion. In this case, the system of
equations reduces to Eqs. (52)–(55). A steady base state exists
in the absence of rotation: �1 = �2 = 0, in which case both
dipole moments assume the same steady value P0 obtained by
solution of Eqs. (52) and (53),

P1 = P2 = P0 = σ21

1 + σ21
R3

(
I + 3σ21

R3 − 2σ21
R̂R̂

)
· ẑ. (58)

In this equation, we see that electric interactions modify the
steady dipole with a correction scaling as O(R−3) that can have
a nonzero component perpendicular to the field depending on
the orientation of the spheres. Next, we perturb the steady-state
dipole by a small amount

P1(t) = P0 + εp1(t), P2(t) = P0 + εp2(t), (59)

which induces weak rotations

�1(t) = εω1(t), �2(t) = εω2(t). (60)

Linearization of the governing equations easily yields a
homogeneous system of coupled linear ordinary differential
equations for the perturbation dipoles

dp1

dt
=

(
1 − ε21

σ21

)
ω1 × P0 − p1 − σ21

R3
� · p2, (61)

with a similar equation for p2(t). In Eq. (61), the linearized
angular velocity ω1 is expressed as

ω1 = 1

Ma

{
1

σ21
p1 × P0 − 1

R3
P0 × (� · p2)

− 1

2R3
� ·

[
1

σ21
p2 × P0 − 1

R3
P0 × (� · p1)

]}
. (62)

with a similar expression for ω2. Equations (61) and (62),
together with equivalent expressions for p2 and ω2, can be
written in the form

d

dt

[
p1

p2

]
= J(Ma,ε21,σ21,R) ·

[
p1

p2

]
, (63)

where the 6 × 6 Jacobian matrix J is a function of the Mason
number Ma (or equivalently of E0/E

0
c ), of the dimensionless

material parameters ε21 and σ21, and of the dimensionless
separation vector R between the two spheres. Note that while
the matrix J depends on the separation vector R, its eigen-
values really only depend on the dimensionless distance R

between the sphere centers and on the angle � = cos−1(R̂ · ẑ)
defining the orientation of the sphere pair with respect to the
external field direction. The explicit form of J, which is quite
cumbersome, is omitted here for brevity.
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FIG. 5. (Color online) Results of the linear stability analysis.
(a) Critical electric field Ec in the presence of interactions (normalized
by the critical field E0

c for onset of Quincke rotation of an isolated
particle) as a function of the orientation angle � between the pair of
spheres and the field direction, for various values of the separation
distance R. (b) Critical electric field Ec/E

0
c as a function of �

for R = 2.5, when either electric interactions (EIs), hydrodynamic
interactions (HIs), or both are taken into account. In (b), note that the
two curves for EI + HI and for HI only fall exactly on top of each
other. In this figure, the materials parameters ε21 and σ21 were chosen
as in the recent experiments of Lemaire and coworkers [29–32] to be
ε21 = −0.1097 and σ21 = −0.5.

The eigenvalues λ of the Jacobian J, which can be calculated
numerically, determine the stability of the base state with no
rotation. Their real parts are the actual growth rates, and a
positive growth rate indicates the exponential growth of any
small perturbation of the base-state dipole moment of Eq. (58),
subsequently leading to Quincke rotation of the particles. A
numerical solution of the eigenvalue problem shows that the
Jacobian has six real eigenvalues, which are all negative when
there is no electric field. As the field strength is increased,
some of them become positive indicating the onset of Quincke
rotation. The critical field value Ec above which instability
occurs is plotted as a function of the orientation � of the
spheres in Fig. 5(a), where it is normalized by the critical
field E0

c obtained in Eq. (33) in the absence of interactions.
The effect of interactions is subtle and can either increase or
decrease the value of the critical electric field depending on
�: for spheres that are nearly aligned with the field (� close
to 0 or π ), the critical electric field increases, corresponding to
a stabilizing effect of interactions, whereas it decreases when
the pair of spheres is aligned in a direction perpendicular to the
applied field (� close to π/2), corresponding to a destabilizing
effect. These effects are clearest when the particles are close to

one another, and as the distance R increases, the critical electric
field asymptotically tends to the critical field E0

c for an isolated
sphere. The dependence of Ec on R can also be probed and
shows that Ec/E

0
c − 1 = O(R−3) for R � 1, as could have

been anticipated from the form of the governing equations.
The respective roles of electric and hydrodynamic inter-

actions on the stability can be further analyzed by solving
two additional eigenvalue problems in which either type of
interaction is turned off. The results for the critical field
in these various cases are plotted in Fig. 5(b), for a fixed
distance of R = 2.5. When only electric interactions are
taken into account, the critical electric field shows a similar
dependence on � as when both types of interactions are
included, indicating a stabilizing effect of electric interactions
for a pair of spheres aligned with the field but a destabilizing
effect for spheres aligned perpendicular to the field; however,
the critical value of the electric field is always larger than
when hydrodynamic interactions are included, suggesting that
hydrodynamic interactions play a more important role in the
onset of rotation than electric interactions. This is indeed
confirmed when electric interactions are turned off, in which
case the critical electric field Ec is the same as for the full
system of equations: this curious observation suggests that
hydrodynamic modes are the ones that govern the modification
of the onset of instability by interactions.

IV. NUMERICAL SIMULATIONS

While the linear stability analysis of Sec. III provided
results on the onset of rotation in the presence of interactions,
nonlinear dynamics can only be studied numerically. In this
section, we present results from numerical simulations of the
unsteady governing equations, which were integrated using
a fourth-order Runge-Kutta time-marching scheme. We first
consider the case of two spheres that are fixed in space but
free to rotate in Sec. IV A, and then turn to the case of
freely suspended spheres in Sec. IV B. In all simulations, the
initial dipole moments are given by Eq. (58) but are weakly
perturbed by infinitesimal random vectors with components
of magnitude of the order of 10−3. For both fixed and freely
suspended spheres, we note a very strong sensitivity of the
solution on the infinitesimal initial perturbation introduced in
the system. Therefore, we focus the discussion on a few repre-
sentative cases as well as on the statistics for the steady states
obtained over many realizations with different random initial
perturbations. In all of this section, the two dimensionless
material constants ε21 and σ21 are set to ε21 = −0.1097 and
σ21 = −0.5, which correspond to the experiments of Lemaire
and coworkers [29–32] and were also the values used by Huang
et al. [34].

A. Fixed spheres

A typical simulation in the case of two fixed spheres in
a field of magnitude E0 = 1.5 E0

c is shown in Fig. 6, where
both the components and magnitude of the angular velocities
are plotted as functions of time. The infinitesimal perturbation
introduced to the system at t = 0 is found to amplify with time
and lead to the growth of the angular velocities, which briefly
oscillate and reach steady values. The steady-state angular
velocities are always found to have zero components in the
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FIG. 6. (Color online) Angular velocities in a simulation of two
fixed interacting spheres separated by a distance R = 10 undergoing
Quincke rotation in an applied electric field of magnitude E0 =
1.5 E0

c : (a) angular velocity �1 of the first sphere as a function
of time; (b) angular velocity �2 of the second sphere; (c) angular
velocity magnitudes.

field direction as in the single-sphere case. Quite interestingly,
the magnitudes �1 and �2 of the angular velocities are found
to converge to the same value, even though the directions
of rotation are not the same. This peculiar result, which we
cannot explain theoretically, is observed systematically in all
simulations. The final direction of rotation in the x-y plane
depends sensitively on the initial perturbation, but the steady
magnitude of the angular velocity varies only weakly between
simulations at fixed values of R, �, and E0. The effect of
further increasing the electric field is shown in Fig. 7, where �1

and �2 are plotted vs time for two simulations with E0/E
0
c =

3.0 and 6.0. We find that stronger fields result in stronger
and faster oscillations during the initial transient, but these
oscillations always subside and give way to synchronization
of the angular velocity magnitudes.

Next, we analyze statistics of the steady angular velocity
reached after the initial transient oscillations. We report aver-
ages over larger numbers (� 200) of simulations with different
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FIG. 7. (Color online) Angular velocities as functions of time in
two simulations with R = 10 at different field strengths: (a) E0/E

0
c =

3.0, (b) E0/E
0
c = 6.0.
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1.051.041.031.021.011.000.990.98
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 Θ = 0
 Θ = π/4
 Θ = π/2

FIG. 8. (Color online) Onset of Quincke rotation of two interact-
ing spheres: the plot shows the average steady-state angular velocity
as a function of the applied electric field E0 for two spheres separated
by a distance R = 4.0 and for various orientations �. The vertical
dashed lines show the critical electric field strengths Ec/E

0
c for onset

of rotation predicted by the linear stability analysis of Sec. III.

small random initial perturbations. Throughout this section, we
also compare these statistics to an asymptotic estimate of the
steady-state angular velocity derived in Appendix A in the case
of corotating spheres in the limit of R � 1

〈�2〉 = �2
0 + 1 + 3 cos 2�

R3

[
ε21

(
E0

E0
c

)2

+ (σ21 − ε21)

]
,

(64)

where �2
0 = (E0/E

0
c )2 − 1 denotes to the steady-state angular

velocity of an isolated sphere.
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FIG. 9. (Color online) Dependence of the deviation (�2 − �2
0) of

the steady-state angular velocity from the isolated sphere value on:
(a) the distance R between the spheres, and (b) the orientation �

of the sphere pair with respect to the field direction. Both plots were
obtained for E0/E

0
c = 1.5. In (b), the simulation results are compared

to the asymptotic result of Eq. (64).
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FIG. 10. (Color online) Dependence of (�2 − �2
0) × R3 on elec-

tric field strength E0 above the onset of Quincke rotation, for different
values of � and R. The simulation results are compared to the
asymptotic prediction of Eq. (64).

The onset of Quincke rotation in the case of two interacting
spheres is illustrated in Fig. 8, where the steady-state angular
velocity magnitude is plotted as a function of the applied field
and is seen to undergo a pitchfork bifurcation at a critical
electric field. In excellent agreement with the results of the
linear stability analysis of Sec. III, the value of the critical
electric field depends on the orientation � of the spheres,
with � = 0 as the most stable orientation and � = π/2 as the

most unstable one. As the distance R between the two spheres
increases, the value of � converges towards the single-sphere
solution �0 with a bifurcation at E0 = E0

c .
The precise dependence of the steady-state angular velocity

on R and � is shown in Fig. 9. The deviation �2 − �2
0

between the angular velocity in the presence of interactions
and that of an isolated sphere is plotted in Fig. 9(a) and
is observed to decay rapidly as 1/R3, as could have easily
been anticipated from the form of the governing equations
and in agreement with the asymptotic estimate of Eq. (64).
The sign of this deviation depends again on the orientation of
the spheres: interactions tend to decrease the rate of rotation
for spheres aligned with the field direction and increase it for
spheres aligned in a perpendicular direction. The functional
dependence on � is plotted in Fig. 9(b) and agrees quite well
with Eq. (64) as soon as R � 10.

Figure 10 shows the effect of field strength E0 on
the angular velocity above the bifurcation. Increasing field
strength increases the effect of interactions with a quadratic
dependence on E0/E

0
c , and all the results for different values

of � and R are found to collapse remarkably well onto the
asymptotic approximation of Eq. (64), which provides an
excellent prediction for the angular velocity regardless of the
directions of rotation when R is sufficiently large.

B. Freely suspended spheres

We now turn our attention to the dynamics of freely
suspended spheres, whose relative motion results from the
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FIG. 11. (Color online) Dynamics of freely suspended spheres: (a) typical particle trajectories (where the two dots mark the initial position
of the particles), (b) magnitude of the angular velocities vs time, and (c) separation distance vs time. Depending on the relative position of
the spheres and on the infinitesimal initial perturbation introduced in the system, four different types of motions are observed, as illustrated in
cases 1–4. In this plot, E0/E

0
c = 4.0, ε21 = −0.1097 and σ21 = −0.5. Also see the accompanying online movie [49].
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combination of the rotlet flows generated by the sphere
rotations and of the dielectrophoretic forces (dipole-dipole
interactions) as discussed in Sec. II B3. As we show below,
dielectrophoretic forces can result in the pairing of the
particles, in which case we implement a contact algorithm
to prevent particle overlap. The algorithm assumes rolling
without slipping between the two sphere surfaces and is
explained in more detail in Appendix B. It is important to note
that the calculation of electrohydrodynamic interactions used
here is based on the assumption of widely separated spheres,
and is therefore likely inaccurate when the two particles are
near contact. This should be borne in mind when analyzing
the simulations presented here, and it is difficult to anticipate
how the observed dynamics would change in the near field
if a more accurate calculation of interactions were used (for
instance based on a boundary integral formulation).

As in the case of fixed spheres, we observe a strong sensi-
tivity of the dynamics to the initial perturbation introduced
in the system at t = 0. Using numerical experiments, we
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FIG. 12. (Color online) Probability of the two spheres pairing up
(cases 1, 2, and 3) vs separating (case 4) as a function of R0 = |R0| and
�0 = cos−1(R0 · ẑ/R0), where R0 = R(t = 0) is the initial separation
vector between the spheres: (a) E0/E

0
c = 4.0, and (b) E0/E

0
c = 6.0.

The black quarter disk centered at the origin corresponds to the region
of excluded volume.

have identified four different types of qualitatively different
behaviors, which are illustrated in Fig. 11 and accompanying
online movie [49]. Case 1 corresponds to the somewhat
artificial situation where no perturbation is introduced in the
system. In this case, the motion of the two spheres as a result
of dielectrophoresis is sufficient to destabilize the system and
induce rotation. The dynamics of the sphere pair is perfectly
two dimensional, and the particles are observed to undergo
a spiraling motion during which their separation distance
decreases leading to pairing up. The spiraling motion, which
is observed in many trajectories (including in cases 2 and 3),
is a consequence of the rotlet flows generated by the spinning
spheres. Upon pairing, the spheres in case 1 continue to orbit
around one another ad infinitum. In a physical system, small
perturbations are expected to occur leading to cases 2, 3,
and 4. In cases 2 and 3, the particles are also observed to
pair up, though their motion is three dimensional. In case 2,
pairing up eventually leads to alignment of the two spheres
in the direction of the applied field and counterrotation in a
normal direction, which causes them to translate as a pair
in a horizontal direction at a constant velocity once steady
state has been reached. In case 3, which is found to occur
most rarely, pairing of the spheres leads to orbiting motions
that eventually stabilize to a steady configuration in which the
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FIG. 13. (Color online) Typical particle trajectories for E0/E
0
c =

6.0, ε21 = −0.1097 and σ21 = −0.5: plots (a) and (b) show two
different types of trajectories corresponding, respectively, to cases
2 and 3 of Fig. 11. In this plot, the two dots mark the initial positions
of the particles.
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spheres are aligned in a direction perpendicular to the electric
field and corotate around their axis of centers while remaining
stationary in space. Finally, in case 4 the two spheres do not
pair up but rather slowly separate in space as a result of dipolar
interactions while steadily rotating.

The outcome of a particular simulation is difficult to predict
based solely on the initial configuration of the spheres, as
different infinitesimal perturbations can lead to any of cases 2
to 4. To quantify this subtle dependence, we show in Fig. 12(a)
the probability of pairing (cases 1, 2, and 3) vs separation
(case 4) as a function of the initial distance R0 between the
spheres and of their initial orientation �0 with respect to the
field direction, for the same electric field strength as in Fig. 11
(E0/E

0
c = 0.4). We observe that initial configurations in which

the spheres are initially nearly aligned with the electric field
are more likely to lead to particle pairing, which could have
been anticipated based on the form of the dielectrophoretic
forces which are attractive for such configurations [13,42,50].
However, many initial values of R0 and �0 are seen to
equally lead to either pairing or separation. The effect of
increasing field strength is shown in Fig. 12(b), where the
pairing probability is plotted for E0/E

0
c = 6.0. In this stronger

field, we find that the region of high pairing probability
extends further away from the field axis, indicating a stronger
likelihood of pairing events at high values of E0. Typical
trajectories for the value of E0/E

0
c = 6.0 are shown in Fig. 13.

These trajectories, which correspond to cases 2 and 3, show
similar characteristics as in Fig. 11 but exhibit stronger orbiting
motions, which we find to be a feature of all simulations in
strong fields.

V. CONCLUDING REMARKS

In summary, we have developed an analytical model for
the Quincke rotation of a pair of identical spherical particles
that are interacting both electrically and hydrodynamically.
The modeling of Quincke rotation is based on the classic
Taylor-Melcher leaky dielectric model and on an asymptotic
description of interactions using the method of reflections,
which is valid for widely separated particles. We have only
retained leading-order electric and hydrodynamic effects,
which result from electric dipole-dipole interactions and
from hydrodynamic rotlet interactions due to the spinning
of the spheres, respectively, and we note that both types of
interactions modify the dipoles and angular velocities of the
spheres to order O(R−3). Using a linear stability analysis in the
case where the two spheres are fixed in space, we have shown
that interactions can either have a stabilizing or destabilizing
effect on the onset for rotation depending on the orientation of
the sphere pair with respect to the field direction, and that the
leading effect of interactions on this onset is of hydrodynamic
origin.

Numerical simulations of the governing equations have also
been performed for both fixed spheres and freely suspended
spheres. In all of these simulations, we always observed
synchronization of the angular velocity magnitudes, though the
axes of rotation of the two spheres are not the same in general.
In the case of spheres that are held fixed in space, Quincke
rotation of the spheres only occurs above a critical electric
field that matches the prediction of the stability analysis, and

the time dynamics in the unstable regime are characterized
by transient oscillations leading to synchronization at a steady
angular velocity. The steady-state angular velocity magnitude
and direction depend sensitively upon the configuration of
the spheres and initial perturbation to the system, though we
find that the statistics of the mean angular velocity magnitude
〈�2〉 are well described by a theoretical estimate derived for
corotating spheres.

In the case of freely suspended spheres, relative motion
of the particles also occurs as a result of the hydrodynamic
flow driven by particle rotations and of the dielectrophoretic
forces on the particles due to multipolar electric interactions.
Numerical experiments have shown that these interactions can
lead to complex particle trajectories, which we categorized
into four cases: (i) two-dimensional spiraling motion leading
to pairing and spinning of the particle pair about the point
of contact (only observed in the absence of any initial
perturbation), (ii) spiraling motion leading to pairing in
the field direction with counterrotation of the spheres and
translation as a pair in a direction perpendicular to the field,
(iii) spiraling motion leading to pairing and alignment in a
direction perpendicular to the field with corotation of the
spheres about their axis of center, and (iv) slow separation of
the spheres accompanied with spiraling trajectories. The out-
come of a particular simulation depends on both the orientation
of the spheres and the initial perturbation to the system.
Increasing field strength is observed to increase the probability
of trajectories leading to pairing, as well as cause more
pronounced spiraling motions. It should be kept in mind,
however, that the model solved is accurate for widely separated
particles and that near-field interactions may lead to different
dynamics in a physical experiment, in particular in cases
where pairing occurs. A more accurate treatment of near-
contact motions would require a different numerical model,
for instance based on the boundary element method.

One important conclusion of this work is the important role
of hydrodynamic interactions, which had been neglected in
previous studies [40,41]. In fact, our asymptotic model demon-
strated that, perhaps surprisingly, hydrodynamic interactions
modify the dipole relaxation equations at the same asymptotic
order as electric dipole-dipole interactions. It was also noted
that the onset of instability for two interacting spheres is
primarily affected by hydrodynamic interactions, and that the
spatial dynamics in simulations of freely suspended spheres
show a strong influence of rotlet interactions which cause
orbiting and spiraling motions.

The present study has cast new light on the effects
of electrohydrodynamic interactions on Quincke rotation in
the simplest case of two identical spherical particles, and
demonstrated a wide variety of dynamical behaviors resulting
from the strongly nonlinear nature of the system. The effects
of such complex pair interactions in large-scale suspensions
of many interacting particles remain, however, difficult to
anticipate, and may include structure formation on multiple
scales and complex chaotic or correlated motions. We also
expect these dynamics and patterns to be modified by an
external flow, a situation of interest for the modeling of
rheological experiments [29–33]. Some of these effects will
be addressed in future work using numerical simulations by
extending efficient algorithms previously developed by Park
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and Saintillan [13,50] for nonlinear electrokinetic interactions
in colloidal suspensions.
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APPENDIX A: ASYMPTOTIC ESTIMATE OF THE
STEADY-STATE ANGULAR VELOCITY

In this Appendix, we derive an asymptotic expression for
the steady-state angular velocity of two interacting spheres that
are fixed in space, in the case where the spheres are corotating:
�1 = �2 = �. In this case, it is also obvious by symmetry that
P1 = P2 = P. We seek an expression for the correction to the
steady-state angular velocity �0 = |�0| and dipole moment P0

of an isolated sphere to account for leading-order interactions
in the limit of large separation distance R � 1. The single-
sphere case was solved in Sec. II A, where we obtained in
dimensionless variables

P0 = −A0
1�0 × ẑ + A0

2̂z, �2
0 =

(
E0

E0
c

)2

− 1, (A1)

with

A0
1 = ε21 − σ21

1 + �2
0

, A0
2 = ε21 − A0

1. (A2)

When interactions are taken into account, the dipole
relaxation equation (52) at steady state simplifies to

� × (P + ε21Ee) − (P + σ21Ee) = 0, (A3)

where Ee = −̂z + � · P/R3 is the electric field experienced
by each sphere. To leading order, this can be approximated
as Ee ≈ −̂z + � · P0/R

3, where P0 is given in Eq. (A1). The
dipole moment equation (A3) can then be inverted for P as

P = A1 [� × Ee + (� · Ee)�] − A2Ee, (A4)

where A1 and A2 are defined as in Eq. (A2) but with �0

replaced by �. This expression can then be substituted into
the torque balance equation (54), which becomes

� = A1

Ma

[
E2

e� − (� · Ee)Ee − (� · Ee)(� × Ee)

+ 1

R3
(I − ẑ̂z) · �0

]
, (A5)

where we have only kept leading-order corrections in 1/R3.
Equation (A5) is a nonlinear equation for the angular velocity
�; as in the single-sphere case, it does not admit a unique
solution as the direction of rotation is indeterminate. However,
it can be used to obtain an expression for the magnitude of
the angular velocity. To this end, we assume an asymptotic
expansion for � of the form

� = �0 + α

R
+ β

R2
+ γ

R3
+ O(R−4), (A6)

where α, β, and γ are unknown vectors. The corresponding
expansion for the magnitude of the angular velocity is also

given by

�2 = �2
0 + 1

R
(2�0 · α) + 1

R2
(2�0 · β + α2)

+ 2

R3
(�0 · γ + α · β) + O(R−4). (A7)

By substituting these expansions into Eq. (A5), where care
must be taken to also expand A1 which is also a function
of �, one can derive a hierarchical set of conditions on the
unknown vectors α, β, and γ by successively identifying terms
corresponding to various powers of 1/R. At zeroth order, we
recover the solution for an isolated particle, as expected. At
first, second, and third orders, the conditions obtained are

order O(R−1) : α · ẑ = 0, �0 · α = 0, (A8)

O(R−2) : β · ẑ = 0, 2�0 · β + α2 = 0, (A9)

O(R−3) : �0 · γ + α · β = (
1 + �2

0

)[
(� : �0�0)

/
4�2

0

− ẑ · � · P0
]
. (A10)

While these conditions are not sufficient to solve for the vectors
α, β, and γ , they are sufficient to fully obtain the unknown
coefficients in the expansion of �2 in Eq. (A7), which becomes

�2 = �2
0 + 2

R3

(
1 + �2

0

) (
� : �0�0

4�2
0

− ẑ · � · P0

)
+O(R−4). (A11)

This expression shows that electric and hydrodynamic inter-
actions modify the angular velocity of the spheres to order
O(R−3), though the perturbation depends on the direction
of rotation through �0 and on the orientation of the spheres
through the tensor �. To obtain a more general estimate for
the angular velocity that does not depend on the direction of
rotation, we take an average of Eq. (A11) over all orientations
of �0, which after algebra yields the simple expression

〈�2〉 = �2
0 + 1 + 3 cos 2�

R3

[
ε21

(
E0

E0
c

)2

+ (σ21 − ε21)

]
+O(R−4), (A12)

in terms of the angle � = cos−1(R̂ · ẑ) between the field
direction and the direction of the line of centers. While this
expression was obtained for two corotating spheres, we show
in Sec. IV that it provides a very good approximation to the
steady-state angular velocity in the limit of R � 1 even when
the two spheres are rotating in different directions.

We also note that Eq. (A12) can be used to provide an
estimate for the critical field Ec in the presence of interactions
by solving for the field value for which 〈�2〉 = 0,

Ec ≈ E0
c

√
(1 + 3 cos 2�)(ε21 − σ21) + R3

(1 + 3 cos 2�)ε21 + R3
, (A13)

which can be compared to the numerical results of the linear
stability analysis of Sec. III and shows excellent agreement for
R � 1.
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APPENDIX B: CONTACT ALGORITHM

In the simulations of freely suspended spheres, particle
overlap is prevented by introducing additional equal and
opposite contact forces Fc = Fc

1 = −Fc
2 at the point of contact

between the two touching particles. These forces modify both
the torque and force balances on the spheres. The torque
balance of Eq. (42) becomes, in dimensionless form,

�1 + 1

2R3
� · �2

= 1

Ma

[
P1 ×

(̂
z − 1

R3
� · P2

)
+ 1

4π
R̂ × Fc

]
, (B1)

�2 + 1

2R3
� · �1

= 1

Ma

[
P2 ×

(̂
z − 1

R3
� · P1

)
+ 1

4π
R̂ × Fc

]
. (B2)

The force balances of Eqs. (48) and (49) are also modified as

U1 = − 1

R2
�2 × R̂ + 1

3πMa
(F1 + Fc), (B3)

U2 = 1

R2
�1 × R̂ + 1

3πMa
(F2 − Fc). (B4)

To determine the contact force, we prescribe that there be
rolling without slipping between the two touching surfaces,
which is expressed as

U1 + �1 × R̂ = U2 − �2 × R̂. (B5)

If P1 and P2 are known, Eqs. (B1)–(B5) form a system of
five vector equations for the five unknowns �1, �2, U1, U2,
and Fc. This system can be inverted analytically, yielding new
expressions for �1, �2, U1, and U2 to be used instead of
Eqs. (54)–(57) when the two particles are in contact.
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