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ABSTRACT
The effective diffusivity of a Brownian tracer in unidirectional flow is well known to be enhanced due to shear by the classic phenomenon of
Taylor dispersion. At long times, the average concentration of the tracer follows a simplified advection–diffusion equation with an effective
shear-dependent dispersivity. In this work, we make use of the generalized Taylor dispersion theory for periodic domains to analyze tracer
dispersion by peristaltic pumping. In channels with small aspect ratios, asymptotic expansions in the lubrication limit are employed to obtain
analytical expressions for the dispersion coefficient at both small and high Péclet numbers. Channels of arbitrary aspect ratios are also con-
sidered using a boundary integral formulation for the fluid flow coupled to a conservation equation for the effective dispersivity, which is
solved using the finite-volume method. Our theoretical calculations, which compare well with results from Brownian dynamics simulations,
elucidate the effects of channel geometry and pumping strength on shear-induced dispersion. We further discuss the connection between
the present problem and dispersion due to Taylor’s swimming sheet and interpret our results in the purely diffusive regime in the context of
Fick–Jacobs theory. Our results provide the theoretical basis for understanding passive scalar transport in peristaltic flow, for instance, in the
ureter or in microfluidic peristaltic pumps.
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I. INTRODUCTION

Brownian tracers or solutes in a quiescent fluid disperse as a
result of molecular diffusion only. Unidirectional flows such as pipe
flows, however, stretch and enhance tracer concentration gradients,
leading to an increased effective diffusivity at long times. In a land-
mark paper, Taylor1 built upon this basic picture to analyze the
dispersion of a solute in a tube. He arrived at a cross-sectionally
averaged advection–diffusion equation for the tracer concentration
with a shear-dependent diffusivity known as the dispersivity. This
effective dispersion coefficient was found to scale as Pe2, where Pe
= Ua/D is the Péclet number of the flow expressed in terms of the
mean velocityU, channel radius a, and molecular diffusivityD. Tay-
lor’s calculations were based on strong intuition that was further for-
malized by Aris2 in the so-called method of moments. In the context
of transport in a tube, the Taylor–Aris prediction is an asymptotic
result and is only valid once the tracers have had sufficient time to
sample all the transverse positions in the channel cross section. Since
these seminal models, many other methods have been proposed to

calculate the effective dispersivity, which involve asymptotic expan-
sions,3 Frankel and Brenner’s generalized Taylor dispersion (GTD)
theory,4 center-manifold reduction,5,6 and, more recently, a formu-
lation that combines the method of moments with Dirac’s bra–ket
formalism.7 All of these methods rely on a well-known asymptotic
technique consisting of eliminating fast modes in a problem to arrive
at a simpler equation for the long-time behavior of a slow mode.6

The concept of a simplified cross-sectionally averaged transport
equation is appealing since in many applications one is primarily
interested in determining asymptotic transport properties such as
the mean velocity or mean square displacement. As a result, the clas-
sical analysis has been extended and applied to various problems
involving dispersion in turbulent flows,8 solute transport in pipes
with reactive walls,9 cross-flow problems to model sedimenting par-
ticles or filtration,10–12 geophysical flows,13 and microfluidics.14–16

A particularly relevant extension of Taylor dispersion in the
present context applies to transport through porous media. The
analysis of solute transport in porous media flows was formalized
by Brenner,17 who proposed a general theory for dispersion in a
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spatially periodic matrix based on GTD, which we briefly review
in Sec. II B. This GTD theory can be used to calculate the effective
dispersivity by the solution of a conservation equation and quadra-
tures over the representative unit cell defining the periodic lattice.
This technique has since been used extensively to study shear disper-
sion in porousmaterials,18,19 electrophoretic20 and pressure-driven21
flows in periodic and serpentine channels,22 and periodic networks23
in the context of microfluidic applications. These various models
come under the purview of “macrotransport theory,” which aims
to derive asymptotic equations for measurable long-term quantities
from the governing equations of microscopic field variables.

In this work, we make use of Brenner’s GTD theory for porous
media17 to study shear-enhanced dispersion under peristalsis. The
flow is driven by a prescribed periodic wave train on the flexi-
ble walls of a two-dimensional channel, resulting in net unidirec-
tional pumping. Peristaltic pumping is quite ubiquitous in biolog-
ical processes, and examples include transport in the ureter, in the
digestive tract, and in certain types of blood vessels. The mecha-
nism has also been exploited to pump fluid in various microflu-
idic devices.24–27 Understanding the transport of passive Brownian
solutes in these flows is, therefore, a problem of fundamental inter-
est. There has been a number of numerical investigations of trans-
port in perstaltic flows involving particle simulations and a dynami-
cal systems approach.26,28 In contrast, theoretical investigations have
been scarce29 and have focused on the limit of long wavelength
deformations.

In the absence of flow, the transport of Brownian tracers in
periodic geometries or periodic potential landscapes has been ana-
lyzed in the context of Fick–Jacobs (FJ) theory.30 This approach
models effective diffusive dynamics of particle positions in entropic
potentials.31 Macrotransport GTD theory has been proposed as
an alternative to FJ theory to understand force-driven transport
through entropic barriers.32,33 The theory and numerics developed
in the present paper capture this classical limit of pure diffu-
sion as a special case but also extend it to account for peristaltic
flow.

The paper is organized as follows: we start by laying out the
problem definition and governing equations and then review the
basics of GTD theory in spatially periodic porous media in Sec. II.
We solve the flow and dispersion problems in the long-wave limit
using the lubrication approximation in Sec. III, where we obtain
analytical expressions for the dispersivity in various asymptotic
limits. We then generalize the results to arbitrary channel aspect
ratios in Sec. IV, focusing on the Stokes limit where we use the
boundary integral method for flow calculations. Solving for the dis-
persivity in that case involves the solution of a conservation law
using a finite-volume method, details of which are also presented in
Sec. IV.We summarize the results and discuss possible extensions in
Sec. V.

II. PROBLEM DEFINITION

A. Geometry, kinematics, and fluid flow
We analyze the solute transport in an infinite two-dimensional

channel whose walls deform periodically in the transverse direc-
tion according to a sinusoidal traveling wave [Fig. 1(a)]. We denote
variables in the fixed laboratory frame with tildes ˜, with the position

FIG. 1. (a) Channel geometry in the fixed reference frame at two instants of time(t̃, t̃′). Material points on the wall move up and down periodically. (b) Fixed chan-
nel in the translating reference frame for two different modulation amplitudes: γ
= 0.6 (solid curve) and γ = 0.2 (dashed curve).

vector defined as R̃ = (X̃, Ỹ) with respect to a fixed origin located
on the channel centerline. The half-width of the channel from the
centerline is given by

h̃(X̃, t̃) = h0�1 + γ sin 2π
λ (X̃ − ct̃)�, (1)

where 2h0 is the mean channel width, c is the wave speed, λ is the
wavelength, and γ is a geometric parameter controlling the ampli-
tude of deformation. The location of the two channel walls is then
given by Ỹ = ±h̃(X̃, t̃). We also introduce A = 2h0λ as the area of
the channel enclosed by one wavelength. In this fixed frame, mate-
rial points on the walls move periodically in the Ỹ direction with
velocity ±@h̃(X̃, t̃)�@ t̃.

It is convenient to perform a Galilean transformation to a mov-
ing frame that translates with the wave speed c in the X̃ direction.34
To this end, we define the new coordinates

R = R̃ − ct̃ x̂, t = t̃, (2)

where (x̂, ŷ) are unit vectors in the streamwise and transverse direc-
tions. In the moving frame, the geometry of the channel is fixed with
respect to time,

h(X) = h0�1 + γ sin 2πX
λ �, (3)

and a velocity of − c exists at the walls in the X direction [Fig. 1(b)].
We also note that the partial derivative with respect to time is
transformed according to

@

@ t̃
= @

@t
− c @

@X
. (4)

Phys. Fluids 32, 113102 (2020); doi: 10.1063/5.0030569 32, 113102-2

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

Denoting the fluid velocity in the fixed reference frame as ũ= (ũ, ṽ), the corresponding velocity u = (u, v) in the moving frame
is simply given by

u(R) = ũ(R̃, t̃) − c x̂ (5)
and is independent of time. It satisfies the steady incompressible
Navier–Stokes equations,

∇R ⋅ u = 0, ρu ⋅ ∇Ru = −∇Rp + �∇2
Ru. (6)

Periodic boundary conditions apply in the X direction. At the walls,
the no-slip condition in the fixed frame requires u(X, Y) to have a
slip velocity of –c,

u(X,±h) = −c. (7)
A boundary condition on v is obtained from the no-penetration
condition n̂ ⋅ u = 0, where n̂ is the unit normal. At the top wall,

n̂ = 1�
1 + h′(X)2 �−h

′(X)x̂ + ŷ�. (8)

Combined with Eq. (7), this provides the condition

v(X,±h) = ∓ch′(X). (9)

Equations (6), along with boundary conditions (7) and (9), entirely
specify the flow problem. The formulation presented here is clas-
sic, going back to the seminal work of Shapiro et al.35 Two different
solution approaches are presented in the following, based on a long
wavelength approximation in Sec. III and on the boundary integral
method at zero Reynolds number in Sec. IV. Having determined the
flow field, a quantity of interest is the net flow rate or pumping rate.
In the fixed laboratory frame,

Q̃(X̃, t̃) = 2� h̃

0
ũ(X̃, Ỹ)dỸ = Q + 2ch̃, (10)

where

Q = 2� h

0
u(X,Y)dY (11)

denotes the flow rate in the moving frame and is a constant indepen-
dent of both position and time.36

B. Passive tracer transport

1. Mean velocity and dispersion coefficient
We analyze the transport of a single Brownian tracer with

instantaneous position R̃(t̃) in the fixed laboratory frame. The tracer
is advected by the fluid flow and also diffuses with molecular diffu-
sivity D. The statistics of R̃(t̃) are governed by the probability den-
sity function ψ̃(R̃, t̃), which satisfies the Fokker–Planck equation,

@ψ̃
@ t̃

+∇R̃ ⋅ J̃ = δ(R̃ − R̃′)δ(t̃), (12)

where the flux J̃ is given by

J̃ = ũ(R̃, t̃)ψ̃ −D∇R̃ψ̃. (13)

The right-hand side of Eq. (12) captures the initial condition, with
the tracer located at R̃ = R̃′ at t̃ = 0. The Fokker–Planck equation is

subject to the no-flux condition on the walls of the channel, n̂ ⋅ J̃ = 0,
and to the normalization condition,

�
Ω∞

ψ̃(R̃, t̃)d2R̃ = 1, (14)

where the integral is over the entire areaΩ∞ of the channel.
Our goal in this paper is to predict the long-time behavior of

the ensemble-averaged tracer position and variance, respectively,
defined as

R̃(t̃) = �
Ω∞

R̃ ψ̃(R̃, t̃)d2R̃ (15)

and

(R̃ − R̃)(R̃ − R̃)(t̃)
= �

Ω∞
(R̃ − R̃)(R̃ − R̃) ψ̃(R̃, t̃)d2R̃. (16)

At long times (t̃ � h20�D and t̃ � λ2�D), both of these moments are
expected to grow linearly with t̃,

R̃ ∼ Ũ∗ t̃ (R̃ − R̃)(R̃ − R̃) ∼ 2D̃∗ t̃. (17)

The vector Ũ∗ = Ũ∗x̂ characterizes the mean transport velocity,
whereas the second-order tensor D̃∗ = D̃∗x̂x̂ describes the mean dis-
persivity. By symmetry, they each only involve one scalar quantity:
the mean velocity Ũ∗ and dispersion coefficient D̃∗, respectively.
2. Frame transformation

As for the flow problem, we move to the reference frame trans-
lating with the peristaltic wave by applying the transformation of
Eqs. (2) and (5). By virtue of Eq. (4), we find that the Fokker–Planck
equation (12) in the moving frame remains unchanged,

@ψ
@t

+∇R ⋅ J = δ(R − R′)δ(t), (18)

where ψ(R, t) is now the probability density function of finding the
particle at position R = R̃ − ct̃ x̂ in the new frame, and the form of
the flux also remains identical,

J = u(R)ψ −D∇Rψ. (19)

Equations (15) and (16) for the ensemble-averaged position and
variance transform as

R = R̃ − ct̃ x̂, (20)

(R − R)(R − R) = (R̃ − R̃)(R̃ − R̃), (21)

and, therefore, the mean velocities and dispersion coefficients in the
two frames are related by

U∗ = Ũ∗ − c, D∗ = D̃∗. (22)

3. Generalized Taylor dispersion framework
We now proceed to outline the solution for U∗ and D∗ in the

moving frame based on GTD theory.37 More precisely, we apply
Brenner’s macrotransport scheme for spatially periodic media,17
which we specialize to the singly periodic geometry of the chan-
nel along the X direction. The model also closely follows the
calculations of Yariv and Dorfman20 for electrophoretic transport in
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channels with periodically varying cross sections. We simply quote
the relevant results here without proof, and the reader is referred to
Brenner’s seminal paper17 for more complete derivations.

We recall that in the moving reference frame, the channel
geometry is fixed and given by Eq. (3) and is periodic along the X
direction with period λ. We can, thus, think of the channel as being
generated by the discrete translation of a unit cell of length λ, and it
is convenient to index each cell by an integer n ∈ Z, with the refer-
ence n = 0 corresponding to the unit cell where the origin is located
(Fig. 2). The global position R = (X, Y) of a point tracer inside the
channel can then be decomposed as R = nλx̂ + r, where n specifies
the cell in which the tracer is located and r = (x, y) is a local coor-
dinate inside that cell. In other words, the instantaneous position R
of the tracer in the channel is equivalently specified by the pair (n,
r), which forms the basis of Brenner’s theory. The probability den-
sity function ψ(R, t) is then expressed as ψ(n, r, t). Note also that,
by periodicity, the fluid flow in the channel is only a function of the
local coordinate, u(R) = u(r).

The first step toward solving for U∗ and D∗ consists in
determining the asymptotic local probability density ψ∞0 (r), which
describes the long-time probability density function for finding the
tracer at local position r, irrespective of its cell index n. We obtain
ψ∞0 by summing the probability density function ψ(n, r, t) over all
values of n,

ψ∞0 (r) = lim
t→∞

∞�
n=−∞ψ(n, r, t). (23)

The governing equation for ψ∞0 (r) can be inferred from Eq. (18) to
be

∇r ⋅ J∞0 = 0 (24)

with flux

J∞0 = uψ∞0 −D∇rψ∞0 . (25)

This is subject to the no-flux condition at the walls, periodicity
requirements at x = 0, λ, and the normalization condition

�
Ωc

ψ∞0 d2r = 1, (26)

where Ωc denotes the domain of a unit cell. Because the flow is
incompressible, the solution to this problem is trivial,

ψ∞0 (r) = 1
A
, (27)

FIG. 2. A cartoon of the periodic geometry with periodicity λ with the representative
unit cell highlighted by a circle. The coordinate system used in the macrotransport
theory is depicted: the global position R = (X, Y ) in the moving frame is decom-
posed as R = nλx̂ + r, where n is the current cell index and r is a local coordinate
inside the unit cell.

where A = 2h0λ is the area of the unit cell. The mean transport
velocity is then given by

U∗ = �
Ωc

J∞0 d2r. (28)

The contribution from the diffusive flux in Eq. (25) can be elimi-
nated using the divergence theorem and boundary conditions. After
projection along the x direction, we obtain

U∗ = 2
A �

λ

0
� h

0
u(x, y)dxdy = λQ

A
= Q
2h0

. (29)

In other words, the asymptotic mean velocity is simply given by the
cross-sectionally averaged fluid velocity.

Solving for the dispersion coefficient requires determining the
so-called B-field, which is the local scalar defined as20

B(r) = lim
t→∞�λA

∞�
n=−∞nψ(n, r, t) −U∗t�. (30)

It characterizes deviations in streamwise tracer transport from the
mean velocity and can be interpreted as a dispersion potential. It
satisfies the advection–diffusion equation,

D∇r ⋅ (ψ∞0 ∇rB) − J∞0 ⋅ ∇rB = ψ∞0 U∗, (31)

subject to the no-flux condition at the walls, n̂ ⋅ ∇rB = 0, and to a
jump condition at the periodic boundaries of the unit cell,

B(λ, y) − B(0, y) = −λ. (32)

Once the B-field is known, the dispersion coefficient is simply
calculated as

D∗ = D
A �Ω∞ �∇rB�2 d2r. (33)

The solution of the B-field is only determined up to a constant,
whose value does not affect the result for D∗.

III. LONG WAVELENGTH APPROXIMATION
In this section, we first present an asymptotic solution for the

flow and dispersion problems based on the classical lubrication
approximation for small aspect ratio channels with h0/λ = ε � 1.
Our calculation for the flow field is classic and closely follows the
work of Latham,34 whereas the solution of the dispersion problem
shares similarities with the work of Yariv and Dorfman.20

A. Dimensionless flow problem
Following lubrication theory, we non-dimensionalize the coor-

dinates and flow variables using the following scales:

x ∼ λ, y ∼ ελ, u ∼ c, v ∼ εc, p ∼ �c
ε2λ . (34)

The dimensionless Navier–Stokes equations read

@u
@x

+
@v
@y
= 0, (35)

εRe�u@u
@x

+ v@u
@y
� = −@p

@x
+ �ε2 @2u

@x2
+
@2u
@y2
�, (36)

ε3Re�u@v
@x

+ v@v
@y
� = −@p

@y
+ �ε2 @2v

@x2
+ ε4 @

2v
@y2
�, (37)
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where the Reynolds number is defined as Re = ρch0/� based on
the channel half-width. At the top wall located at y = h(x) = 1
+ γ sin(2πx), the boundary conditions are

u(x,h) = −1, v(x,h) = −h′(x). (38)

By symmetry, we only need to solve for the flow in the upper half of
the channel and, therefore, apply symmetry boundary conditions at
the centerline,

@u
@y
(x, 0) = 0, v(x, 0) = 0. (39)

The dimensionless flow rate, scaled by h0c, is given by

Q = 2� h

0
udy. (40)

From here on, we exclusively use dimensionless variables unless
specified otherwise.

B. Leading order flow solution
We solve the Navier–Stokes equations by seeking a regular

perturbation expansion in powers of ε� 1,

u ∼ u0 + εu1 + ε2u2 +�, (41)

p ∼ p0 + εp1 + ε2p2 +�. (42)

We shall later see that, for the purpose of estimating dispersion, only
the leading-order axial velocity field is needed. Here, we provide the
leading order axial and the transverse [O(ε)] velocity fields. At lead-
ing order in ε, Eq. (37) shows that the pressure is at most a function
of x: p0 = p0(x). Since the leading order transverse velocity field is of
order O(ε), the xmomentum equation (36) simplifies to

@2u0
@y2

= dp0
dx

. (43)

Using the no-slip and symmetry boundary conditions, this inte-
grates to the well-known parabolic profile typical of lubrication
problems,38

u0(x, y) = −1 − 1
2
dp0
dx
�h2(x) − y2�. (44)

The above equation must integrate to the leading-order flow rate Q0
according to Eq. (40). On simplifying, this leads to an expression for
the local pressure gradient,

dp0
dx
= − 3

2h3
(Q0 + 2 h). (45)

Given the pressure gradient, we can define the net pressure rise over
one unit cell of the channel,34

PR = �dp0
dx
�, (46)

where we introduce the notation

�f (x)� = � 1

0
f (x)dx. (47)

If there is no imposed pressure gradient, then the pressure rise must
be identically zero by periodicity. This is a case of pure peristalsis
where the flow is entirely driven by the imposed motion of the walls.

Dispersion in pressure-driven flow is already well understood since
the work of Taylor1 and Aris,2 so we focus on pure peristaltic flow
and set PR = 0 in this work. Under this condition, the flow rate is
entirely determined from the geometry of the walls,

Q0 = −2 �1�h2��1�h3� = −41 − γ
2

2 + γ2 (48)

from which we find the mean transport velocity as

U∗0 = Q0

2
= −21 − γ2

2 + γ2 . (49)

Combining Eqs. (44) and (45) yields an expression for the axial
velocity in terms of the flow rate and geometry,

u0 = 3
4 h3
(Q0 + 2 h)(h2 − y2) − 1. (50)

Substituting this expression into the continuity equation (35) and
integrating yield the leading-order transverse velocity of orderO(ε),

v1 = h′(x)y
4 h4

�3Q0�h2 − y2� − 4y2h�. (51)

This completes the solution to the leading order hydrodynamic
problem.

C. Dimensionless B -field problem
We apply the same lubrication scalings as in Eq. (34) to the

governing equation (31) for the B-field, also scaling the variable B
with the wavelength λ. After simplifications, the governing equation
becomes

@2B
@y2
= ε2�PeU∗ + Pe�u@B

@x
+ v@B

@y
� − @2B

@x2
�, (52)

where Pe = cλ/D is the Péclet number and measures the rela-
tive strength of advection over diffusion. The no-flux boundary
condition at the top wall is expressed as

@B
@y
= ε2h′(x)@B

@x
at y = h(x), (53)

whereas the symmetry boundary condition at the channel centerline
implies

@B
@y
= 0 at y = 0. (54)

Finally, the jump condition (32) becomes

B(1, y) − B(0, y) = −1. (55)

The axial dispersion in the long wavelength limit is then simply given
by the following quadrature over the unit cell:

D∗ = � 1

0
� h

0
� 1ε2 @

2B
@y2

+
@2B
@x2
�dxdy, (56)

where D∗ has been scaled by the molecular diffusivity D.
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D. Leading order diffusivity
We seek a solution for B as a regular perturbation expansion in

the small parameter ε2,

B ∼ B0 + ε2B1 +�. (57)

It should be noted that the validity of this expansion is more sub-
tle than for the flow problem. Indeed, all the terms appear to be of
order O(ε2) on the right-hand side of Eq. (52) due to the choice
of non-dimensionalization. However, for large Péclet numbers, the
advective termswill no longer beO(1) so that the appropriate condi-
tion for the validity of the expansion becomes ε2Pe� 1. Substituting
the expansion (57) into Eq. (52), we proceed to solve for B at the first
two orders.

Solution at O(0): At the zeroth order, we simply have

@2B0

@y2
= 0 (58)

with boundary conditions

@B0

@y
= 0 at y = 0,h(x). (59)

This implies that B0 = B0(x), so to leading order the B-field is inde-
pendent of the transverse coordinate. In order to solve for this
leading order field, we must consider the next order term in the
expansion.

Solution at O(ε2): Upon collecting terms of O(ε2) in Eq. (52),
the governing equation for B1 is obtained as

@2B1

@y2
= Pe[U∗0 + u0B′0(x)] − B′′0 (x), (60)

where u0 is the zeroth order solution of the hydrodynamic problem
obtained in Eq. (50). The boundary conditions at this order are given
by

@B1

@y
= h′(x)dB0

dx
at y = h(x), (61)

@B1

@y
= 0 at y = 0. (62)

We integrate Eq. (60) with respect to y over the width of the channel.
Using the boundary conditions and recalling the definition (40) for
the flow rate, we obtain a differential equation for B0,

B′′0 + �h′
h
− Q0Pe

2h
�B′0 = Q0Pe

2
, (63)

where we have substituted U∗0 = Q0�2. This is subject to the jump
condition (55), which can be recast in the form

�dB0

dx
� = −1. (64)

Equation (63) can be integrated once to obtain

B′0(x) = Q0Pe
2α(x) �

x

0
α(x′)dx′ + C

α(x) (65)

with integrating factor

α(x) = exp�� x

0
�h′
h
− Q0Pe

2h
�dx′�. (66)

The integration constant C is obtained by the application of the
modified jump condition (64),

C = −1 +
Q0Pe
2
�α−1(x)� x

0
α(x′)dx′�

�α−1(x)� . (67)

Note that the knowledge of B′0(x) in Eq. (65) is sufficient to deter-
mine the leading order dispersivity using Eq. (56). After simplifica-
tions, we, indeed, find

D∗0 = �h(x)B′20 (x)�. (68)

E. Asymptotics for small and large Péclet numbers
Equation (68), along with (65), provides an expression for the

dispersivity, which must be evaluated by numerical quadratures as
we do in Sec. III F. This numerical integration can prove to be a
challenge at large values of Pe. For this reason and to gain better
insight, we complement Eq. (68) with asymptotic results in the two
limits of small and large Péclet numbers.

1. Small Péclet number
In the limit of Pe � 1, solving for B0 involves a regular

perturbation problem. We seek an expansion of the form

B0 = b(0) + Pe b(1) +�, (69)

which can be substituted into Eq. (63). The leading order differential
equation is simply

b′′(0) + h′
h
b′(0) = 0. (70)

This is an exact differential and can be integrated to obtain

b′(0) = K
h
, (71)

where the jump condition �b′(0)� = −1 is used to find the integration
constant K = −�1/h�−1. Substituting this expression into Eq. (68)
yields

D∗0 = �1�h�−2 � 1

0

h
h2

dx = 1�1�h� +O(Pe2). (72)

This shows that the shape modulation in the channel affects the dif-
fusivity to leading order in the absence of any flow. For a straight
channel with γ = 0, the leading order dispersivity is simply unity.
However, the diffusivity in the limit Pe→ 0 drops below one for any
value of γ > 0, and it tends to zero when γ→ 1 corresponding to the
case of fully closed pores. We discuss this behavior in more detail in
Sec. III F.

2. Large Péclet number
In this limit, we introduce the small parameter δ = 1/Pe and

rewrite Eq. (63) as

δB′′0 + �δh′
h
− Q0

2 h
�B′0 = Q0

2
. (73)
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At first glance, this may seem like a singular perturbation problem
involving a boundary layer of thickness δ.39 However, we will find
that the asymptotics are simplified by a regular perturbation expan-
sion in the small parameter δ and that the leading order solutions do
satisfy all the boundary conditions. Hence, we seek an expansion of
the form

B0 = b(0) + δb(1) +�. (74)
At zeroth order, Eq. (73) simply reads

b′(0) = −h, (75)

which automatically satisfies the jump condition �b′(0)� = −1 since�h� = 1. At the next order O(δ), Eq. (73) yields
b′′(0) + h′

h
b′(0) − Q0

2 h
b′(1) = 0. (76)

On using the zeroth order solution, we find

b′(1) = − 4
Q0

hh′, (77)

which also satisfies the appropriate jump condition due to the peri-
odicity of h. Substituting Eq. (74) into Eq. (68) then provides the
dispersion coefficient. After simplifications,

D∗0 = �h3� + 4
Q2

0Pe2
�h4h′′� +O(Pe−4), (78)

which, for the sinusoidal geometry of Eq. (3), gives

D∗0 = 1 + 3
2
γ2 − 8π2

Q2
0Pe2

γ2(4 + 3γ2) +O(Pe−4). (79)

We recall that the large Pe asymptotics in the long wavelength limit
are valid when 1� Pe� ε−2.

F. Results and discussion
We use Eq. (65) in conjunction with Eq. (68) to calculate the

effective dispersivity for a range of Pe numbers and for several values
of the geometric parameter γ. For large Pe numbers, the numeri-
cal quadratures in Eq. (65) become challenging, and we resorted to
use chebfun40 and solved Eq. (63) instead. We validate our calcu-
lation against Brownian dynamics simulations following the algo-
rithm described in the Appendix. Figure 3 shows a typical distribu-
tion of tracers in one of these simulations, as well as the evolution
of the mean-square displacement used to estimate D∗. As we show
next, our theoretical calculations match results from simulations
very well, as well as asymptotic predictions in the low and high Péclet
number limits.

The dependence of the diffusivity D∗0 on Pe is illustrated in
Fig. 4 for different values of γ. As a baseline to understand the results,
let us first consider the case γ = 0, corresponding to a straight chan-
nel. In that case, D∗0 = 1 for all values of Pe, i.e., the dispersion is
of purely molecular origin. This is to be expected since the walls
are fixed in that case and there is no flow in the channel. As γ is
increased, the dispersivity at low Pe falls below unity. In the limit of
Pe→ 0, the process is also purely molecular and the decrease in effec-
tive diffusivity can be understood using Fick–Jacobs theory:30 when
γ > 0, the narrow pores act as “entropic barriers” as fewer trans-
verse positions are available there, whereas the wide regions of the
channel act as “entropic traps” where the Brownian motion is effec-
tively slower compared to a straight channel. At low Péclet numbers,
this has the effect of hindering axial dispersion, with the long-time

FIG. 3. (a) Snapshot from a Brownian simulation with ε
= 0.05, γ = 0.3, and Pe = 50, showing the dispersion of
Brownian tracers in the moving reference frame. (b) Mean
square displacement σ2(t) as a function of time for the same
simulation as in (a). The slope of the linear profile at long
times provides the dispersivity according to Eq. (A4).
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FIG. 4. Variation of the effective dispersivity D∗0 with Péclet number Pe in the long-
wave limit of ε� 1. The plot compares the theoretical prediction of Eq. (68) with
Brownian dynamics simulations and also shows the large Péclet asymptotic result
of Eq. (79). The low Péclet asymptotes match the theoretical prediction of Eq. (72).
The different curves correspond to different width modulations, γ = 0.3, 0.5, 0.7.

dispersivity decreasing with decreasing pore opening (increasing
γ).33 In the limit of γ→ 1, the long-time dispersivity tends to zero at
low Pe, corresponding to the case of completely closed pores with the
tracer particles remaining trapped inside the unit cells where they are
released.

The scenario becomes quite different as Pe becomes of order
O(1) and higher. A net increase in the dispersivity takes place due
to the flow, and the trends with respect to pore opening γ are
reversed compared to low Péclet numbers. At large Pe, the trans-
port is, indeed, dominated by the mechanism of Taylor dispersion
by which the shear generated by the channel deformations couples
with cross-streamline molecular diffusion to enhance axial disper-
sion. This explains both the increase in D∗0 with Pe and γ since the
characteristic flow shear rate scales with Pe and is enhanced in chan-
nels with small pores due to incompressibility. We note the peculiar
limit of γ → 1 at high Péclet numbers, where D∗0 does not tend to
zero as expected for closed pores and in fact asymptotes to 1 + 3γ2/2.
This can be explained by a divergence of the shear rate inside the
pore in this limit.

IV. ARBITRARY ASPECT RATIOS
We have solved the dispersion problem in Sec. III in the long

wavelength limit of ε� 1, ε2Re� 1, and ε2Pe� 1. However, biolog-
ical peristaltic pumping often occurs in channels with finite aspect
ratios, where the flow topologies can become more complex and
involve recirculation bubbles41 as we show below. The Reynolds
number, however, remains low to moderate in many physiological
flows,42 with Shapiro35 estimating that it is of order unity in the
ureter. With these applications in mind, we now use numerical sim-
ulations to analyze the case of arbitrary channel aspect ratios in the
Stokes regime, with no restrictions on Pe.

A. Flow problem: Boundary integral method
For flows with negligible inertia (Re → 0), the velocity field in

the moving frame satisfies the Stokes equations,

∇r ⋅ u = 0, ∇2
ru = ∇rp. (80)

Following Pozrikidis,41,43 we solve these equations using the bound-
ary integral representation, which expresses the fluid velocity at a
point r on the channel wall as

u(r) = 1
2π �S[G(r; r0) ⋅ f(r0) + u(r0) ⋅ T(r; r0) ⋅ n̂(r0)]ds(r0),

(81)

where f is the distribution of surface tractions on the channel walls.
The tensor G is known as the Stokeslet and is the fundamental solu-
tion to the Stokes equations for a point force, and T is the associated
Green’s function for the stress. Exploiting the periodicity in the x
direction, along with the symmetry of the flow about the center-
line, we follow Pozrikidis41,44 and recast Eq. (81) as an integral over
one period of a single wall by making use of the appropriate Green’s
functions. Upon applying the no-slip and no-penetration boundary
conditions, Eq. (81) provides an integral equation for the tractions f,
which, once known, are used to determine the velocity at any point
inside the channel.

We discretize the top wall of the channel using N + 1 collo-
cation points and N linear elements. The unknown tractions are
assumed to be constant over each element, whereas the velocities are
assumed to vary linearly. The discrete form of the boundary integral
equation (81) at the center rm of elementm is

um +
N�
n=1B

mn = N�
n=1A

mn ⋅ f n. (82)

The matrix Anm and vector Bmn are given by

Amn = 1
2π �Sn G(rm; r0)ds(r0), (83)

Bmn = 1
2π �Sn u(r0) ⋅ T(rm; r0) ⋅ n̂(r0)ds(r0), (84)

where Sn are the linear elements used to approximate the boundary.
The integrations over each of the elements are performed using a
Gauss–Legendre quadrature rule with 16 quadrature points. The lin-
ear system resulting from the discretization of the boundary integral
equation results in a dense matrix that is solved using LU decom-
position. All the results shown below were obtained using N = 256
collocation points. Once the tractions are known, the boundary inte-
gral equation is used to calculate the velocity at any interior point in
the domain.

B. Dispersion calculation: Finite volume method
We now turn to the numerical calculation of the dispersion

coefficient, which requires solving Eq. (31) for the B field using a
finite volume method (FVM). Given the jump condition of Eq. (32),
we first find it convenient to define the new variable B∗ = B + x,
which is now periodic in the x direction. It satisfies the modified
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governing equation

−Pe�@(uB∗)
@x

+
@(vB∗)

@y
� + @2B∗

@x2
+

1
ε2

@2B∗
@y2

= Pe�U∗ − u�, (85)

where the last term −Pe u arises from the change of variable. The
aspect ratio ε is no longer constrained to be small. In order to solve
this equation, we use a coordinate transformation that maps the
physical domain (half unit cell) to a square by scaling the vertical
coordinate by the local channel half-width (see Fig. 5),

ζ = x, η = 1
h(x)y. (86)

The partial derivatives are related through the Jacobian matrix,

����
@
@x
@

@y

���� =
1
h
�h −h′η
0 1

�
�����
@

@ζ
@

@η

�����
. (87)

After transformation, Eq. (85) is integrated over a square grid cell to
yield a system of algebraic equations for B∗. The coordinate transfor-
mation results in additional non-orthogonal terms that are handled
using an implicit formulation.45

The modified field B∗ is subject to periodic boundary condi-
tions in the ζ direction,

B∗(0,η) = B∗(1,η), (88)

and to the symmetry boundary condition at the centerline,

@B∗
@η = 0 at η = 0. (89)

The boundary condition at the top wall is inferred from the no-flux
condition, n̂ ⋅ ∇rB = 0, which becomes

@B∗
@η = ε2� h(ζ)h′(ζ)

ε2h′(ζ)2 + 1
��@B∗

@ζ − 1��������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Φ(ζ)

at η = 1. (90)

Having solved for B∗, we obtain the dispersivity by quadrature,

D∗ = 2
A �

1

0
� 1

0

������
1

ε2h2 �@B
∗

@η �
2

+

+�@B∗
@ζ − ηh

′
h
@B∗
@η − 1�

2������hdζdη,
(91)

TABLE I. Comparison of the effective diffusivity D∗ obtained by the FVM method with
asymptotic predictions in the absence of flow (Pe = 0). The aspect ratio in the FVM
simulations was chosen to be ε = 0.05.

Pore opening (γ) FVM Asymptotics

0.1 0.9950 0.9950
0.3 0.9539 0.9539
0.5 0.8661 0.8660
0.7 0.7140 0.7141

where the dimensionless area is A = 2ε.
The discretized problem for B∗, as presented here, results in

a singular matrix. This should not come as a surprise since B∗ is
only defined up to a constant, and only its gradient is needed to
obtain the dispersivity. To specify B∗ uniquely, we must impose a
solvability criterion, and following the work of Bolster et al.,21 we
impose a constraint of zero mean for B∗ using a Lagrange multi-
plier. The no-flux boundary condition [Eq. (90)] on the top wall is
satisfied iteratively using the method of deferred correction,46 which
uses solutions from previous iterations to calculate Φ(ζ) and update
the source terms resulting from boundary conditions. In most sim-
ulations, convergence to 10−9 is achieved in ∼5 to 40 iterations for
a grid of size 2002. In the diffusion dominated regime for channels
with large aspect ratios, convergence becomes challenging, and in
that case, we use a relaxation method with a relaxation parameter
of ∼0.5.
C. Validation

We first validate our numerical method by comparison with
the long-wave asymptotic results derived in Sec. III, which are valid
in the limit of ε2Pe � 1. This limit is difficult to capture using
the FVM method, especially for moderate to large Péclet numbers,
which require increasingly small aspect ratio channels. The coordi-
nate transformation in the FVM method makes computations chal-
lenging for small aspect ratio channels and small pore openings. On
the other hand, as the aspect ratio is decreased, the boundary integral
method also requires a higher number of quadrature points, which
proves to be time consuming. We first compare FVM results against
asymptotics in the diffusive limit in the absence of any flow, and
excellent agreement is found, as shown in Table I, for an aspect ratio
of ε = 0.05. A comparison up to Pe ∼ O(5) was also performed (not
shown), with agreement within 5%. For the latter, the lubrication

FIG. 5. Mapping between the physical
domain (half unit cell) and computational
domain and representative grid used for
the finite-volume solution of the B field.
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TABLE II. Comparison of the effective dispersivity D∗ obtained by the FVM method
and using Brownian dynamics simulations, for a channel with ε = 0.7 and γ = 0.2.

Péclet number (Pe) FVM Brownian dynamics

0 0.9431 0.9214
10 0.9803 0.9844
20 1.0119 1.0199
50 1.0970 1.1690

solution for the flow field was used to calculate the advective terms
in the FVM formulation.

We also validate the method for finite aspect ratio chan-
nels by comparison with Brownian dynamics simulations follow-
ing the algorithm outlined in the Appendix. In these simulations,
the velocity field is computed using the boundary integral method
and is pre-tabulated on a grid. Linear interpolation is then used
to determine the instantaneous position of the tracers during the
solution of the Langevin equation (A1). As shown in Table II,
both methods show good agreement over a wide range of Péclet
numbers.

D. Results and discussion
We now discuss some aspects of dispersion in finite aspect ratio

channels with the help of the numerical techniques outlined above.
We first consider the diffusive limit in the absence of any flow (Pe
= 0), which reduces to the well-studied problem of diffusion in a cor-
rugated channel.21,33 In this case, our previous discussions based on
Fick–Jacobs theory and the concept of entropic barriers still hold.
When Pe = 0, the dispersion is entirely controlled by the channel
aspect ratio ε and width modulation γ, and trends in terms of these
two parameters are presented in Table III. For a fixed width modu-
lation γ, channels with larger aspect ratios ε have a decreased value
of their dispersivity. This trend, which is consistent with predictions
of Fick–Jacobs theory,33 may seem counterintuitive as increasing ε
for a fixed γ increases the width of the pores, but it also leads to an
increase in the size of the entropic traps between pores. In addition,
increasing the width modulation for a given ε also causes a sharp
decrease in D∗ for the same reason as in Fig. 4: as γ approaches 1,
the pore openings become increasingly small and strongly hinder
longitudinal transport.

TABLE III. Effect of channel geometry (parameters ε and γ) on the dispersivity D∗ in
the pure diffusive limit (Pe = 0).

Width modulation (γ) Aspect ratio (ε) Dispersivity (D∗)

0.4
0.5 0.8720
0.7 0.8090
1 0.7329

0.2 0.9431
0.6 0.7 0.6400
0.8 0.4426

FIG. 6. Streamlines in the moving reference frame show the appearance of recir-
culation bubbles in sufficiently deformed channels. The top row shows the effect
of increasing γ at a fixed ε, whereas the bottom row shows the effect of increasing
ε at a fixed γ.

Turning to the effects of flow, we first show in Fig. 6 some typ-
ical streamlines for different combinations of γ and ε. We find it
convenient to consider streamlines in the moving frame, where they
are left-right symmetric and lend themselves to an easier interpreta-
tion of our results. We recall that even though the flow is different
in the fixed frame, the dispersion is the same in both frames. While,
in the lubrication limit, the flow fields are always locally parabolic
according to Eq. (50), the flow features become more interesting as
the aspect ratio ε and width modulation parameter γ are increased.
Indeed, recirculation bubbles start to appear, as shown in Fig. 6,
which are reminiscent of those occurring in shear flow over cavi-
ties.47 These recirculation regions are expected to have an effect on
tracer dispersion, as noted in previous studies on pressure-driven
Stokes flow.48

The dependence of the dispersivity on the Péclet number for
various channel geometries is shown in Fig. 7. The low-Pe behav-
ior is identical to the diffusive limit discussed previously. The effect
of the flow becomes noticeable for Pe � 1 − 10, where the dis-
persivity starts deviating from the low-Pe asymptote and shows
an increase with Pe. This change is due to shear-enhanced dis-
persion, which starts dominating the effect of molecular diffusiv-
ity. Finally, in strong flows, the dispersivity eventually increases
as Pe2, corresponding to the classical Taylor dispersion limit.1,2
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FIG. 7. Variation of the dispersivity D∗ with the Péclet number for (a) varying chan-
nel modulations γ, at an aspect ratio of ε = 0.7, and (b) varying aspect ratios ε, at
a channel modulation of γ = 0.5.

The behavior of the effective dispersivity with Pe is similar to that
observed in past studies in the context of dispersion in porous
media.18,49,50

Figure 7 also illustrates the dependence of D∗ on ε and γ. The
trends at low Pe are consistent with the results of Table III for the
diffusive limit. In stronger flows, however, the effects of ε and γ on
D∗ are reversed: channels with the largest values of ε and γ, i.e.,
wide channels with large amplitudemodulation exhibit the strongest
long-time dispersion. In particular, we find that the increase in dis-
persivity with ε and γ at high Péclet numbers persists after the onset
of recirculation bubbles in the flow fields (Fig. 6). This may come
as a surprise initially as one may expect the recirculation bubble to
act like a hydrodynamic trap. However, the increase in dispersivity
can be appreciated from a Lagrangian point of view. Indeed, flows
with recirculation bubbles exhibit stronger cross-streamline velocity
gradients, and trapping inside recirculation zones increases the resi-
dence time of tracers inside the unit cell. Both of these effects, in the
presence of molecular diffusion, act to, further, enhance smearing of
Lagrangian particle clouds. As a result, the asymptotic dispersivity is
increased even though the pre-asymptotic time required to reach the
diffusive limit is longer due to the longer residence time inside the
unit cell.21

V. CONCLUDING REMARKS

We have presented a model based on generalized Taylor dis-
persion theory for the long-time dispersion of a passive tracer trans-
ported in peristaltic flow resulting from periodic surface undula-
tions of an infinite two-dimensional channel. The model was first
analyzed theoretically in the long wavelength limit, followed by
numerical calculations using a boundary integral formulation cou-
pled to a finite volume method in the case of finite aspect ratio
channels in the Stokes regime. Our results were also validated against
Brownian dynamics simulations andwere shown to sharemany sim-
ilarities with past studies on dispersion in rigid corrugated channels.
In the diffusion dominated regime (low Péclet number limit), the
small pores created by channel contractions act as entropic bar-
riers, while the channel bulges act as entropic traps, leading to a
reduction in the long-time axial dispersivity in comparison with a
straight channel. When a flow is applied, the dispersivity is increased
by a mechanism analog to classical Taylor–Aris dispersion, with
an O(Pe2) dependence of the dispersivity in strong flows. Interest-
ingly, the trends in geometry are opposite to those in the diffusive
limit: channels with low aspect ratios and small pores are subject
to stronger shear (including recirculation bubbles for sufficiently
large wall deformations), which acts to further enhance long-time
dispersion.

Many biological transport processes have Péclet numbers in
the range of Pe ∼ 10−2–102, and at the heart of all of these trans-
port phenomena is the competition between entropic trapping and
flow induced enhanced diffusion that is captured by our effective
model. For example, the unicellular organism P. polycephalum has
a complex network of veins that are used to deliver nutrients. It
achieves this by generating contracting peristaltic waves that result
in periodic shuttle flows. It has been reported that these flows can
result in a two orders of magnitude increase in the effective diffu-
sion coefficient compared to the molecular diffusivity of nutrient
molecules.51,52 Another relevant example is peristaltic transport in
the small intestine, which occurs in the advection dominated limit
with Pe ∼ 106. It has been shown that the flows generated due to
the rhythmic contraction of the walls in this system are crucial in
determining the population density and transport of microbes that
play important roles in the health of the host.27 Consistent with the
idea of Taylor dispersion, typical measurements suggest that these
flows can enhance the bare molecular diffusivity by three orders of
magnitude.

It is also interesting to note that there is a simple connection
between the peristaltic flow and the classic problem of “Taylor’s
swimming sheet.”53–55 Taylor’s swimming sheet attains a non-zero
swimming speed using traveling waves on its surface in contrast
to peristalsis where the walls are not allowed to drift. There has
been a considerable interest in the study of effective tracer diffu-
sion and advective mixing in dilute bacterial suspensions.56,57 We
have carried out leading-order asymptotics to study dispersion by a
swimming sheet in the vicinity of a wall, and the results are sim-
ilar to those presented in this paper. The problem can be enti-
tled in good humor as “Taylor dispersion by Taylor’s swimming
sheet.”

Several other problems related to transport and dispersion
in peristaltic flow remain to be explored. Many biological fluids
involved in peristalsis are non-Newtonian in nature.42 Under long
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wavelength approximations, the leading order velocity field of a
second-order fluid is identical to that of a Newtonian fluid,58 and
the asymptotic dispersivity is, therefore, also unchanged. However,
the effects of viscoelasticity could be considered by including higher
order corrections to the velocity field or employing a numerical solu-
tion for the velocity and B fields. Future studies may also address
the geometric shape optimization of peristaltic waveforms for
maximizing dispersion in both Newtonian and non-Newtonian flu-
ids.59,60 Finally, it is worth pointing out that the extension of this
model for relevant biomedical applications comes with new chal-
lenges. For example, it is known that the enhancement in diffusion
of passive tracers in blood capillaries is not only driven by macro-
scopic flows but is also significantly altered bymicrometer-scale flow
disturbances generated by individual red blood cells. Developing
models that capture these subtleties is an area of active interest.61
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APPENDIX: BROWNIAN DYNAMICS SIMULATIONS
We validate the theory by carrying out Brownian dynamics

simulations. The dimensionless Langevin equation corresponding to
Eq. (18) in the moving frame is discretized as

Rn+1 = Rn + Peu(Rn)�t +√2�twn(t), (A1)

where �t is the time step andwn(t) is a Gaussian random vector with
zero mean and unit variance. The no-flux condition at the walls is
imposed through the method of specular reflections.62 We typically
carry out the simulations over an ensemble of N = 105 particles with
a time step of �t = 10−6. The particles are released at R0 = 0, and we
collect statistics at long times. The first two moments of the particle
position are

m1(t) = 1
N

N�
i=1 Xi(t), (A2)

m2(t) = 1
N

N�
i=1 X

2
i (t). (A3)

The effective dispersivity then follows as

D∗ = lim
t→∞

1
2
d
dt
�m2(t) −m2

1(t)�. (A4)
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