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Shear-induced dispersion in peristaltic flow
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ABSTRACT

The effective diffusivity of a Brownian tracer in unidirectional Row is well known to be enhanced due to shear by the classic phenomenon of
Taylor dispersion. At long times, the average concentration of the tracer follows a simplibed advectionbdiffusion equation with an effective
shear-dependent dispersivity. In this work, we make use of the generalized Taylor dispersion theory for periodic domains to analyze tracer
dispersion by peristaltic pumping. In channels with small aspect ratios, asymptotic expansions in the lubrication limit are employed to obtain
analytical expressions for the dispersion coefbcient at both small and high PZclet numbers. Channels of arbitrary aspect ratios are also cor
sidered using a boundary integral formulation for the Buid Bow coupled to a conservation equation for the effective dispersivity, which is
solved using the Pnite-volume method. Our theoretical calculations, which compare well with results from Brownian dynamics simulations,
elucidate the effects of channel geometry and pumping strength on shear-induced dispersion. We further discuss the connection betweer
the present problem and dispersion due to TaylorOs swimming sheet and interpret our results in the purely diffusive regime in the context of
FickbJacobs theory. Our results provide the theoretical basis for understanding passive scalar transport in peristaltic 3ow, for instance, in the
ureter or in microf3uidic peristaltic pumps.

Published under license by AIP Publishirigs://doi.org/10.1063/5.0030569

I. INTRODUCTION calculate the effective dispersivity, which involve asymptotic expan-
sions; Frankel and BrennerOs generalized Taylor dispersion (GTD)
Brownian tracers or solutes in a quiescent Ruid disperse as 1eheory,4 center-manifold reductioni’® and, more recently, a formu-
result of molecular diffusion only. Unidirectional Rows such as pipelation that combines the method of moments with DiracOs brabket
Bows, however, stretch and enhance tracer concentration gradient&rmalism. All of these methods rely on a well-known asymptotic
leading to an increased effective diffusivity at long times. In a land-technique consisting of eliminating fast modes in a problem to arrive
mark paper, Taylor built upon this basic picture to analyze the ata simpler equation for the long-time behavior of a slow mode.
dispersion of a solute in a tube. He arrived at a cross-sectionally  The concept of a simpliPed cross-sectionally averaged transport
averaged advectionbdiffusion equation for the tracer concentratiorquation is appealing since in many applications one is primarily
with a shear-dependent diffusivity known as the dispersivity. Thisinterested in determining asymptotic transport properties such as
effective dispersion coefbcient was found to scaleéiswherePe  the mean velocity or mean square displacement. As a result, the clas-
= Ua/D is the PZclet number of the RBow expressed in terms of thesical analysis has been extended and applied to various problems
mean velocityJ, channel radius, and molecular diffusivitpp. Tay-  involving dispersion in turbulent BowSsolute transport in pipes
lorOs calculations were based on strong intuition that was further fowith reactive wall$,cross-Bow problems to model sedimenting par-
malized by Ari$ in the so-called method of moments. In the context ticles or bltration:™? geophysical Bows,and microRuidics-*
of transport in a tube, the TaylorbAris prediction is an asymptotic A particularly relevant extension of Taylor dispersion in the
result and is only valid once the tracers have had sufbcient time t@present context applies to transport through porous media. The
sample all the transverse positions in the channel cross section. Sine@alysis of solute transport in porous media Rows was formalized
these seminal models, many other methods have been proposed by Brenner,’ who proposed a general theory for dispersion in a
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spatially periodic matrix based on GTD, which we brieRRy review (a)
in Sec.| B. This GTD theory can be used to calculate the effective
dispersivity by the solution of a conservation equation and quadra-
tures over the representative unit cell debning the periodic lattice.
This technique has since been used extensively to study shear disper-
sion in porous materials>*° electrophoretic’ and pressure-driven

Bows in periodic and serpentine channélsnd periodic networks’

in the context of microRRuidic applications. These various models
come under the purview of Omacrotransport theory,O which aims
to derive asymptotic equations for measurable long-term quantities
from the governing equations of microscopic beld variables.

In this work, we make use of BrennerOs GTD theory for porous
medid’ to study shear-enhanced dispersion under peristalsis. The
Bow is driven by a prescribed periodic wave train on the Rexi-
ble walls of a two-dimensional channel, resulting in net unidirec-
tional pumping. Peristaltic pumping is quite ubiquitous in biolog-
ical processes, and examples include transport in the ureter, in the
digestive tract, and in certain types of blood vessels. The mecha-
nism has also been exploited to pump RBuid in various microu-
idic devices ™’ Understanding the transport of passive Brownian e
solutes in these Rows is, therefore, a problem of fundamental inter-
est. There has been a number of numerical investigations of trans FIG. 1. (a) Channel geometry in the Pxed reference frame at two instants of time
portin perstalic Sows involing partile simulations and acynam-_(££); S Pt 0wl vt deurpeiel ) Pt e
cal systems approach:® In contrast, theoretical investigations have _ g ’ ’
beeny scarce ggd have focused on the limit of Ionggwavelength = 0.6 (solid curve) and 0.2 (dashed curve).
deformations.

In the absence of Bow, the transport of Brownian tracers in
periodic geometries or periodic potential landscapes has been anyector dePned aR = (X, Y) with respect to a bxed origin located
lyzed in the context of FickDJacobs (FJ) theOryhis approach ~ ©n the channel centerline. The half-width of the channel from the
models effective diffusive dynamics of particle positions in entropiccenterline is given by
potentials:® Macrotransport GTD theory has been proposed as o
an alternative to FJ theory to understand force-driven transport A(X,8) =ho! L+! sin— (X! &®)", (@]
through entropic barriers>** The theory and numerics developed #

in the present paper capture this classical limit of pure diffu- yhere 2y is the mean channel widtfg is the wave speedis the

sion as a special case but also extend it to account for peristaltiﬁ,avdength, and is a geometric parameter controlling the ampli-

Bow. tude of deformation. The location of the two channel walls is then
The paper is organized as follows: we start by laying out theyiven byY = +R(X, ). We also introduce = 2he# as the area of

problem depnition and governing equations and then review thethe channel enclosed by one wavelength. In this Pxed frame, mate-

basics of GTD theory in spatially periodic porous media in $ec. rja| points on the walls move periodically in thé direction with

W(_a solve the fSOV\_/ and dlspe_rsmn prpblems in the Iong'Wa"e_"m'tvelocityt! R(X, B# &

using the lubrication approximation in Sed!, where we obtain Itis convenient to perform a Galilean transformation to a mov-

analytical expressions for the dispersivity in various asymptoliGyg frame that translates with the wave spesd the X direction
limits. We then generalize the results to arbitrary channel aspeciq his end. we debne the new coordinates

ratios in SeclV, focusing on the Stokes limit where we use the

boundary integral method for Bow calculations. Solving for the dis- R=R! %R, t=t )
persivity in that case involves the solution of a conservation law

using a Pnite-volume method, details of which are also presented iwhere(®, ) are unit vectors in the streamwise and transverse direc-
Sec!V. We summarize the results and discuss possible extensions ifons. In the moving frame, the geometry of the channel is bxed with
SecV. respect to time,

h(X) =hp! 1 +! sin Z#X,,, 3)

Il. PROBLEM DEFINITION

and a velocity of cexists at the walls in th¥ direction [Fig. 1(b].

We also note that the partial derivative with respect to time is
We analyze the solute transport in an inPnite two-dimensionaltransformed according to

channel whose walls deform periodically in the transverse direc-

A. Geometry, kinematics, and fluid flow

tion according to a sinusoidal traveling wave(. 1(a). We denote L = 1o (4)
variables in the Pxed laboratory frame with tildes +, with the position e 1t IX
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Denoting the Buid velocity in the bxed reference frameatas subject to the no-Rux condition on the walls of the chanmigfj= 0,
= (&,¥), the corresponding velocity = (u, v) in the moving frame  and to the normalization condition,
is simply given by

&R IP’R=1 14
U(R) =&(RB | cid ) t,, &RY ’ (14
and is independent of time. It satisPes the steady incompressiblhere the integral is over the entire area !of the channel.
NavierbStokes equations, Our goal in this paper is to predict the long-time behavior of
5 the ensemble-averaged tracer position and variance, respectively,
"R#UI=0, $u#"rU=!" Rp+% RU. (6)  depned as
Periodic boundary conditions apply in thé direction. At the walls, R(B =1 ‘ R&(R, B d°R (15)
the no-slip condition in the bxed frame require¢X, Y) to have a q o
slip velocity of B, an _ _
u(X,zh) =!c @) (RIR)(R! R)(H) (16)
A boundary condition onv is obtained from the no-penetration =1 (R! ﬁ)( R! E) &R B d°R.
1.

condition9#u = 0, where is the unit normal. At the top wall,
Atlong times ¢! h3#D andt! #4#D), both of these moments are
B=$ 1 % h' (X) B+ ¥& (8)  expected to grow linearly with
1+h (X) 2 . _—
R"U't (R! R(R! R " 28" ¢ (17)

Combined with Eq(7), this provides the condition
X +h) = $ch (X 9 The vectord” = U*k characterizes the mean transport velocity,
V(X,£h) = $ehi(X). ©) whereas the second-order ten€r = B* i describes the mean dis-

Equations(6), along with boundary conditions7) and (9), entirely ~ Persivity. By symmetry, they each only involve one scalar quantity:
specify the Row problem. The formulation presented here is clasthe mean velocityy” and dispersion coefbcieB’, respectively.

sic, going back to the seminal work of Shapétcal:”” Two different 5 Frame transformation

solution approaches are presented in the following, based on a long

wavelength approximation in Seic. and on the boundary integral . . A . .
method at zero Reynolds number in S&¢. Having determined the lating with the peristaltic wave by applying the transformation of

Row Peld, a quantity of interest is the net Row rate or pumping rate E4S2) and(5). By virtue of Eq(4), we Pnd that the FokkerbPlanck
In the bxed laboratory frame, equation(12)in the moving frame remains unchanged,

As for the Row problem, we move to the reference frame trans-

. 1& |
ﬁ ) o " = L} I AN
QU =2 B(X,¥) d¥ = Q+2d, (10) g TRAEN(RER)ND, (18)
0
where&(R, t) is now the probability density function of Pnding the
where particle at positiorR = R! dc®in the new frame, and the form of

the Rux also remains identical,

Q=21 u(X.Y)dY (11)
0 J=u(R)&! D" r&. (19)

denotes the Bow rate in the moving frame and is a constant indepen-
dent of both position and timé® Equations(15) and (16) for the ensemble-averaged position and
variance transform as
B. Passive tracer transport -
. . ) . R=R! R, (20)

1. Mean velocity and dispersion coefpbcient

We analyze the transport of a single Brownian tracer with (R! R(R! R) =(R! R(R! R), (21)
instantaneous positioR(t) in the bxed laboratory frame. The tracer
is advected by the Ruid Row and also diffuses with molecular diffu-and, therefore, the mean velocities and dispersion coefbcients in the
sivity D. The statistics oR(f) are governed by the probability den- two frames are related by
sity function &(R,f), which satisbes the FokkerbPlanck equation, Ut =" 1 ¢ D = it 22)

|
é +" g #3="(R! R’)‘ (9, 12) 3. Generalized Taylor dispersion framework
o We now proceed to outline the solution f&* and D* in the
where the Busis given by moving fjame based on GTD theoiy.More precisely, we apply
I=a(RH&! D" R& (13)  BrennerOs macrotransport scheme for spatially periodic media,
_ _ o - ) which we specialize to the singly periodic geometry of the chan-
The right-hand side of Eq(12) captures the initial condition, with  nel along theX direction. The model also closely follows the

the tracer located & = R’ att = 0. The FokkerDPlanck equation is calculations of Yariv and Dorfmafifor electrophoretic transport in
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channels with periodically varying cross sections. We simply quotevhere A = 2ho# is the area of the unit cell. The mean transport
the relevant results here without proof, and the reader is referred toselocity is then given by
BrennerOs seminal papdor more complete derivations. ) .,

We recall that in the moving reference frame, the channel ur=1 Jdr. (28)
geometry is bxed and given by E) and is periodic along th& e
direction with period#. We can, thus, think of the channel as being The contribution from the diffusive Bux in Eq25) can be elimi-
generated by the discrete translation afrit cellof length#, and it~ nated using the divergence theorem and boundary conditions. After
is convenient to index each cell by an intege# Z, with the refer-  projection along thex direction, we obtain
encen = 0 corresponding to the unit cell where the origin is located 2

# h
(Fig. 9. TheglobalpositionR = (X, Y) of a point tracer inside the U =21 1 u(xy) dxdy= Qo g (29)
channel can then be decomposedras n#& + r, wheren specibes Ao "o A 2o
the cell in which the tracer is located amck (x, y) is alocalcoor-  In other words, the asymptotic mean velocity is simply given by the
dinate inside that cell. In other words, the instantaneous posiRon cross-sectionally averaged [3uid velocity.
of the tracer in the channel is equivalently specibed by the pair ( Solving for the dispersion coefbcient requires determining the

r), which forms the basis of BrennerOs theory. The probability derso-called-beld, which is the local scalar dePnet’as

sity function &(R, t) is then expressed &n, r, t). Note also that, "

by periodicity, the Buid Row in the channel is only a function of the B(r) = lim"#A " n&(n,r,t) ! u*t(. (30)
local coordinatey(R) = u(r). ! n=$"

The Prst step toward solving fou” and D* consists in |t characterizes deviations in streamwise tracer transport from the
determining the asymptotic local probability dens&y (r), which  mean velocity and can be interpreted as a dispersion potential. It
describes the long-time probability density function for Pnding the satispes the advectionbdiffusion equation,
tracer at local positiom, irrespective of its cell index. We obtain

" " " u " " —o" #
& by summing the probability density functio&(n, r, t) over all D" 1 #& " B)! J #"B=& U, (1)
values oh, ) subject to the no-Rux condition at the wal# "B = 0, and to a
&6 (n = !im (). 23) jump condition at the periodic boundaries of the unit cell,
il B(#y) ! B(Oy) =!# (32)
The governing equation fa&g (r) can be inferred from Eq.18)to . i ) . .
be Once theB-Peld is known, the dispersion coefbcient is simply
. calculated as
b =0 (24) D'=21  yBfdr (33)
with Bux _ L .
. . . The solution of theB-Peld is only determined up to a constant,
J =u& ! D" (& . (25)  whose value does not affect the resultBdr.

This is subject to the no-Bux condition at the walls, periodicity
requirements ax = 0,#, and the normalization condition Il LONG WAVELENGTH APPROXIMATION
In this section, we Prst present an asymptotic solution for the
1 &0 d’r =1, (26) Bow and dispersion problems based on the classical lubrication
e approximation for small aspect ratio channels whii# = ($ 1.
where ! denotes the domain of a unit cell. Because the Row iour calculationgleor the Bow Peld is classic and closely follows the
incompressible, the solution to this problem is trivial, work of Latham;” whereas the solution of the dispersion problem

shares similarities with the work of Yariv and Dorfmah.

" 1
& (1) = 4. (27)  A. Dimensionless flow problem

Following lubrication theory, we non-dimensionalize the coor-
dinates and RBow variables using the following scales:

/\}/\i//\ X"# y"@# u'"c v'(c p" (0241_ (34)

\W ' The dimensionless NavierDStokes equations read
| |
U Vop (35)

n=-—1 n=0 n=1 G W -
o i i : lu lu I'p 12u 12y
FIG. 2. A cartoon of the periodic geometry with pefiadticitire representative (REU— +v—(=! = +* (27 + 4 (36)
unit cell highlighted by a circle. The coordinate system used in the macrotransport I x ly Tx Ix2 ly2 "’
theory is depicted: the global poRitiofX, Y) in the moving frame is decom- 2 2
posed aR = n#+r, wherenis the current cell index eisch local coordinate (SRé u!l + Vl’( =1 'i) +* 2!7\’ + (4u+ (37)
inside the unit cell. % ly Ty I x2 ly2 '
Phys. Fluidi2, 113102 (2020); doi: 10.1063/5.0030569 32, 113102-4
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where the Reynolds number is debnedRes= $chy/%based on  Dispersion in pressure-driven Row is already well understood since
the channel half-width. At the top wall located st= h(x) = 1 the work of Taylof and Aris? so we focus on pure peristaltic Row
+! sin(2' x), the boundary conditions are and set PR = 0 in this work. Under this condition, the Bow rate is
entirely determined from the geometry of the walls,

u(x,h) =11, v(x,h) =1 h'(x). (38)
By symmetry, we only need to solve for the Bow in the upper half of Qo=12° 2A#°3 _ 41' 12 (48)
the channel and, therefore, apply symmetry boundary conditions at 01##131 2+12

the centerline, . .
from which we bnd the mean transport velocity as

|
“Yx0=0 vx0 =0. (39)
ly Q _ 1112
The dimensionless Row rate, scalechbg; is given by Us = -5 ! 22 7 (49)
h
Q=21 udy. (40) Combining Egs.(44) and (45) yields an expression for the axial
0

velocity in terms of the Bow rate and geometry,
From here on, we exclusively use dimensionless variables unless

specibed otherwise. U =

+ 21 )11

4h3(Qo 2h)(h*1 ¥ 1 1 (50)

Substituting this expression into the continuity equati¢#b) and
We solve the NavierbStokes equations by seeking a regulémtegrating yield the leading-order transverse velocity of oxdéf),

perturbation expansion in powers 6 1,

B. Leading order flow solution

_ h (x)y 2
U o+ (U + (Cup + % (a1) V= 3Qo%h” y°&! 4yh-. (51)
n 2
P po+(pr+(Cp2+%. (42)  This completes the solution to the leading order hydrodynamic

We shall later see that, for the purpose of estimating dispersion, oniproplem.
the leading-order axial velocity Peld is needed. Here, we provide the . )
leading order axial and the transversa([)] velocity belds. At lead- C. Dimensionless B -field problem

ing order in(, Eq.(37) shows that the pressure is at most a function We apply the same lubrication scalings as in Eql) to the
of x: po = po(X). Since the leading order transverse velocity beld is ofyoverning equatiori31) for the B-peld, also scaling the variakie
orderO((), thex momentum equatior{36) simplibes to with the wavelength. After simplibcations, the governing equation

becomes

12

o 0y 43) o6 )
ly2  dx ! 2 ‘B!

I—Z-( 'PeLf+Pe*u—+ Vit st

Using the no-slip and symmetry boundary conditions, this inte- y y X

grates toqthe well-known parabolic proble typical of lubrication

problems?®

(52)

where Pe = c#/D is the PZclet number and measures the rela-
tive strength of advection over diffusion. The no-Bux boundary

" h i
Uo(x.y) =1 11 % dpo 12 (x) ! y2 (44) condition at the top wall is expressed as
'B 'B
The above equation must integrate to the leading-order Row@gte v Ch'(x) > ay= h(x), (53)
according to Eq(40). On simplifying, this leads to an expression for ' '
the local pressure gradient, whereas the symmetry boundary condition at the channel centerline
implies
do_y 3 o+ 2m). 45)
dx  2n3 'B_, _
. . . = =0 at y=0. (54)
Given the pressure gradient, we can debne the net pressure rise over vy
one unit cell of the channef, Finally, the jump condition(32) becomes
PR=. %‘;"/, (46) B(1y) ! B(Oy) =! 1. (55)
where we introduce the notation The axial dispersion in the long wavelength limitis then simply given
1 by the following quadrature over the unit cell:
O(x)1=1 f(x)dx 47)
0 1 h 11 2B 1B

#o_ L
If there is no imposed pressure gradient, then the pressure rise must D" =1 o 'o a y2 I x2

be identically zero by periodicity. This is a casepafe peristalsis
where the Row is entirely driven by the imposed motion of the walls.whereD* has been scaled by the molecular diffusiity

— (dxdy, (56)
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D. Leading order diffusivity
We seek a solution fdB as a regular perturbation expansion in
the small parametef?,

B" By+ (°By + %. (57)

It should be noted that the validity of this expansion is more sub-
tle than for the Row problem. Indeed, all the terms appear to be of

order O((?) on the right-hand side of Eq52) due to the choice

of non-dimensionalization. However, for large PZclet numbers, the

advective terms will no longer l§&( 1) so that the appropriate condi-
tion for the validity of the expansion becom@®e$ 1. Substituting
the expansiorn57)into Eq.(52), we proceed to solve f@at the pbrst

two orders.
Solution at O(0) : At the zeroth order, we simply have
=
e 0 (58)

with boundary conditions

!'Bo
W_O at y=0,h(x).

This implies thatBy = By(X), so to leading order th&-beld is inde-

(59)

pendent of the transverse coordinate. In order to solve for this
leading order beld, we must consider the next order term in the

expansion.
Solution at O((?): Upon collecting terms o®((?) in Eq. (52),
the governing equation fd8; is obtained as

|2
B

—yl = PgUg +UoBo(X)] ! B (X), (60)

whereug is the zeroth order solution of the hydrodynamic problem

obtained in Eq(50). The boundary conditions at this order are given

by
! !
TN at y=hoo, (61)
I B; _ _
Ty =0 at y=0. (62)

We integrate Eq60)with respect toy over the width of the channel.
Using the boundary conditions and recalling the dePnitign) for
the Bow rate, we obtain a differential equation By,

B! +* QOPe+BO _ QoPe
h

(63)

where we have substitutddf; = Qu#2. This is subject to the jump
condition (55), which can be recast in the form

dBy

scitation.org/journal/phf

with integrating factor
', QPe,
h 2h
The integration constanC is obtained by the application of the
modibed jump condition(64),
QoPe

)0 =expr ¥ (66)

SR CTIRICOL

0)$1(X)1

Note that the knowledge dBy(X) in Eq. (65) is sufbcient to deter-
mine the leading order dispersivity using Eg6). After simplibca-
tions, we, indeed, bnd

D = 2h(x) B (X) 3

c= ! (67)

(68)

E. Asymptotics for small and large Péclet numbers

Equation(68), along with(65), provides an expression for the
dispersivity, which must be evaluated by numerical quadratures as
we do in Seclll F. This numerical integration can prove to be a
challenge at large values B& For this reason and to gain better
insight, we complement E¢68) with asymptotic results in the two
limits of small and large PZclet numbers.

1. Small PZclet number

In the limit of Pe$ 1, solving forBy involves a regular
perturbation problem. We seek an expansion of the form

Bo = b? (69)

which can be substituted into E(53). The leading order differential
equation is simply

+Peb? +9%,

b'® + %!b!(o) =0. (70)
This is an exact differential and can be integrated to obtain
K
pl@ =2 71
= (71)

where the jump conditiorth '©@1=11is used to bnd the integration
constantk = ! 01/h1%?, Substituting this expression into E(G8)
yields

=1 +O(Pé).

h? 0l#hl
This shows that the shape modulation in the channel affects the dif-
fusivity to leading order in the absence of any Row. For a straight
channel with! = 0, the leading order dispersivity is simply unity.
However, the diffusivity in the limiPe! 0 drops below one for any
value oft >0, and it tends to zero whehn! 1 corresponding to the
case of fully closed pores. We discuss this behavior in more detail in
Seclll F.

2. Large PZclet number

1
D§ = 01#1*?, . (72)

ol = (64) o .
dx In this limit, we introduce the small parametér= 1/Peand
Equation(63) can be integrated once to obtain rewrite Eq.(63) as
Qo e X 1 | C p! ke h! QO ! Q
X) = x)dx + —— 65 +r = = - 73
Bo(X) = )()!0)() X (65) Bo AL (73)
Phys. Fluidd2, 113102 (2020); doi: 10.1063/5.0030569 32,113102-6
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At brst glance, this may seem like a singular perturbation problem\We recall that the largPeasymptotics in the long wavelength limit

involving a boundary layer of thickness’ However, we will

pnd

are valid when B Pe$ (*2.

that the asymptotics are simplibed by a regular perturbation expan-
sion in the small parameterand that the leading order solutions do  F Results and discussion
satisfy all the boundary conditions. Hence, we seek an expansion of

the form

Bo=b? + b + 9. (74)

At zeroth order, Eq(73)simply reads

b® =1h, (75)

which automatically satisbes the jump conditiamn@1=1 1 since

Chl=1. Atthe next ordelO(" ), Eq.(73)yields

" h Qo
1o 4 o) (1) _
b*™ + hb ! 2hb 0. (76)
On using the zeroth order solution, we bnd
4
b =1 —hh, 77
@ 70

We use Eq(65) in conjunction with Eq.(68) to calculate the
effective dispersivity for a rangeBénumbers and for several values
of the geometric parametér. For largePenumbers, the numeri-
cal quadratures in EJ65) become challenging, and we resorted to
use chebfuff and solved Eq(63) instead. We validate our calcu-
lation against Brownian dynamics simulations following the algo-
rithm described in theAppendix Figure 3shows a typical distribu-
tion of tracers in one of these simulations, as well as the evolution
of the mean-square displacement used to estiriteAs we show
next, our theoretical calculations match results from simulations
very well, as well as asymptotic predictions in the low and high PZclet
number limits.

The dependence of the diffusivip} on Peis illustrated in
Fig. 4for different values of. As a baseline to understand the results,
let us brst consider the cake 0, corresponding to a straight chan-
nel. In that caseD{“)t = 1 for all values oPe i.e., the dispersion is

which also satisbes the appropriate jump condition due to the peri-Of purely molecular origin. This is to be expected since the walls
odicity of h. Substituting Eq(74) into Eq. (68) then provides the

dispersion coefbcient. After simplibcations,

4 11
Dh = t*h'1+ O(PE* 78
0 + QSPE? + ( )! ( )
which, for the sinusoidal geometry of EG), gives
pt=1+3121 87 124437 +0(PdY (79)
0 2 Qe '

are bxed in that case and there is no Row in the channel. s
increased, the dispersivity at Id9efalls below unity. In the limit of

Pel 0, the process is also purely molecular and the decrease in effec-
tive diffusivity can be understood using FickDJacobs théamnen

I > 0, the narrow pores act as Oentropic barriersO as fewer trans-
verse positions are available there, whereas the wide regions of the
channel act as Oentropic trapsO where the Brownian motion is effec-
tively slower compared to a straight channel. At low PZclet numbers,
this has the effect of hindering axial dispersion, with the long-time

-17 -16 -15 -14 X -13 -12 -11 -10
(b) 0.7F
0.6 | FIG. 3. (a) Snapshot from a Brownian simulatidn with
’ = 0.05} = 0.3, andPe = 50, showing the dispersion of
Brownian tracers in the moving reference frame. (b) Mean
0.5+ . 1 square displacem#fit) as a function of time for the same
2D" =226 simulation as in (a). The slope of the linear proPle at long
= 04k 1 | times provides the dispersivity according/id Eq.
&_/
b
0.3+ —
0.2 1
0.1+ —
0 L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3
t
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2 A. Flow problem: Boundary integral method
i i For Bows with negligible inertiaRe! 0), the velocity peld in
— Analytical solution the moving frame satisbes the Stokes equations,
.==. Large Pe asymptotics
o Brownian dynamics " w2 "
r#U =0, ru="p. (80)
15F
Following Pozrikidis,** we solve these equations using the bound-
ary integral representation, which expresses the 3uid velocity at a
D; point r on the channel wall as
1 R
1 u(r) = 51 [G(riro) #(ro) +u(ro) #T(r;ro) #0(ro)] d<(ro),
(81)
< wheref is the distribution of surface tractions on the channel walls.
Y The tensolG is known as the Stokeslet and is the fundamental solu-
05 = - 5 o S , tion to the Stokes equations for a point force, ahis the associated
10 10 10 10 10 10

Pe GreenOs function for the stress. Exploiting the periodicity inxthe

FIG. 4. Variation of the effective dispeBjvitjth PZclet numiBin the long- q”ectlon, along W't_h _the jymmetry of the Bow abc_)ut the center-
wave limit ¢! 1. The plot compares the theoretical predictioft o/viith line, we follow Pozrikidis-** and recast Eqi81) as an integral over _
Brownian dynamics simulations and also shows the large PZclet asymptotRfiedagriod of a single wall by making use of the appropriate GreenOs
of Eq(79) The low PZclet asymptotes match the theoretical predictian of Eqfunctions. Upon applying the no-slip and no-penetration boundary
The different curves correspond to different width modelatiy.5, 0.7. conditions, Eq(81) provides an integral equation for the tractiof)s
which, once known, are used to determine the velocity at any point
inside the channel.
dispersivity decreasing with decreasing pore opening (increasing_,. we qlscret|ze th.e top wall of the channel usiNg+ 1 .COHO'
1) Inthe limitof 1 1, the long-time dispersivity tends to zero at Hation points andN linear elements. The unknown tractions are
o L . assumed to be constant over each element, whereas the velocities are
tracer particles remaining trapped inside the unit cells where they aéssunjed to vary linearly. The discrete form of the boundary integral
released. equation(81) at the centerp, of elemenimiis
The scenario becomes quite differentResbecomes of order N N
O(1) and higher. A net increase in the dispersivity takes place due um+n B™=r AMHN, (82)
to the RBow, and the trends with respect to pore openingre n=1 n=1
reversed compared to low PZclet numbers. At |dPgethe trans- o mn _
port is, indeed, dominated by the mechanism of Taylor dispersion! "€ MatrixA™" and vecto8™ are given by
by which the shear generated by the channel deformations couples

with cross-streamline molecular diffusion to enhance axial disper- A™ = 1 I G(rm;ro) dqro), (83)
sion. This explains both the increaseD with Peand! since the 2
characteristic Row shear rate scales Wigand is enhanced in chan- B™ = 1 I u(ro) #T(rm;ro) #0(ro) d<(ro), (84)
nels with small pores due to incompressibility. We note the peculiar 2"

limit of ! | 1 at high PZclet numbers, wheB§ does not tend to
zero as expected for closed pores and in fact asymptotes td%2: 3
This can be explained by a divergence of the shear rate inside th
pore in this limit.

where§, are the linear elements used to approximate the boundary.

he integrations over each of the elements are performed using a

aussblLegendre quadrature rule with 16 quadrature points. The lin-
ear system resulting from the discretization of the boundary integral
equation results in a dense matrix that is solved uditkydecom-

IV. ARBITRARY ASPECT RATIOS position. All the results shown below were obtained usihg 256

collocation points. Once the tractions are known, the boundary inte-

We have solved the dispersion problem in SEcin the long ral equation is used to calculate the velocity at any interior pointin
wavelength limitof $ 1,(Re$ 1, and(?Pe$ 1.However, biolog- ?he doqmain y y P

ical peristaltic pumping often occurs in channels with bnite aspect
ratios, where the 3ow topologies can become more complex an
involve recirculation bubblé$ as we show below. The Reynolds
number, however, remains low to moderate in many physiological We now turn to the numerical calculation of the dispersion
Bows;” with Shapird® estimating that it is of order unity in the coefbcient, which requires solving EG.) for the B Peld using a
ureter. With these applications in mind, we now use numerical sim-Pnite volume method (FVM). Given the jump condition of EG2),
ulations to analyze the case of arbitrary channel aspect ratios in theve brst bnd it convenient to debne the new varisifle= B + x,
Stokes regime, with no restrictions &e which is now periodic in thex direction. It satisbes the modibed

%. Dispersion calculation: Finite volume method
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governing equation TABLE I. Comparison of the effective diffi¥idtytained by the FVM method with
asymptotic predictions in the absence &fd%00)( The aspect ratio in the FVM
| pa L(ue’) 1 (vB) 178 1! g’ simulations was chosen t66.05.
' I X ly Ix2  (21y2
- Pen’ 1 U, (85) Pore opening!() FVM Asymptotics
where the last termt Pe uarises from the change of variable. The 0.1 0.9950 0.9950
aspect ratiq is no longer constrained to be small. In order to solve 0.3 0.9539 0.9539
this equation, we use a coordinate transformation that maps theD.5 0.8661 0.8660
physical domain (half unit cell) to a square by scaling the vertical0.7 0.7140 0.7141
coordinate by the local channel half-width (see. 9,
1
+=X =—Y. 86
. e y (86)

where the dimensionless areais 2(.
The discretized problem foB*, as presented here, results in
7 - a singular matrix. This should not come as a surprise siitas
| §= 1 : '+§! +§_ 87) only dePned up to a constant, and only its gradient is needed to
) 1 : obtain the dispersivity. To specif§* uniquely, we must impose a
y solvability criterion, and following the work of Bolstet al,”* we

After transformation, Eq(85)is integrated over a square grid cell to IMPOSe a constraint of zero mean féf using a Lagrange multi-

yield a system of algebraic equationsB&r The coordinate transfor-  Pli€r. The no-ux boundary condition [EG90] on the to% wall is
mation results in additional non-orthogonal terms that are handled SatisPed iteratively using the method of deferred correctiamhich

The partial derivatives are related through the Jacobian matrix,

!
X

@Um-b

using an implicit formulation” uses solutions from pre_vious iterations to calculfa_(e) and update_
The modibed beld@ is subject to periodic boundary condi- the source terms resulting fr_om bo_undary condltlor_ls. In_most sim-
tions in the+direction, ulations, convergence to 4®is achieved ift' 5 to 40 iterations for
" " a grid of size 20D In the diffusion dominated regime for channels
B'(0,,) =B'(1.,), (88)  with large aspect ratios, convergence becomes challenging, and in
and to the symmetry boundary condition at the centerline, thfatocgse, we use a relaxation method with a relaxation parameter
of"0.5.
!'B# =0 at, =0. (89)
o C. Validation

The boundary condition at the top wall is inferred from the no-Bux

L ; We brst validate our numerical method by comparison with
condition, 9 # "B = 0, which becomes y P

the long-wave asymptotic results derived in Se¢which are valid
1 B* h(+h' 9, ! B in the limit of (*Pe$ 1. This limit is difbcult to capture using

_(2 _
I, =( (n'(H2+ 1 ﬁ Pl+oat, =1 (90) the FVM method especially for moderate to Iarge PZcIet numbers,

nate transformatlon in the FVM method makes computatlons chal-
lenging for small aspect ratio channels and small pore openings. On
the other hand, as the aspectratio is decreased, the boundary integral
2 1 131 1g*t? method also requires a higher number of quadrature points, which
A ! 0 ThZ* !7+ + proves to be time consuming. We brst compare FVM results against
@ ' (91) asymptotics in the diffusive limit in the absence of any RBow, and
N B# h 1Bt % dd excellent agreement is found, as showii irble | for an aspect ratio

Having solved foB*, we obtain the dispersivity by quadrature,

D* =

"hT I+ of (=0.05. A comparison up tBe" O(5) was also performed (not
shown), with agreement within 5%. For the latter, the lubrication

] FIG. 5. Mapping between the physical

h(z) n domain (half unit cell) and computational

y E— domain and representative grid used for
]_ L L J_ - the Pnite-volume solution d3 kedd.
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TABLE Il. Comparison of the effective dispe§idbtained by the FVM method
and using Brownian dynamics simulations, for a chgrmelithd = 0.2.

PZclet numberfe FVM Brownian dynamics
0 0.9431 0.9214
10 0.9803 0.9844
20 1.0119 1.0199
50 1.0970 1.1690

solution for the Row Peld was used to calculate the advective terms 0

in the FVM formulation.

We also validate the method for Pnite aspect ratio chan-
nels by comparison with Brownian dynamics simulations follow-
ing the algorithm outlined in theAppendix In these simulations,

the velocity beld is computed using the boundary integral method

and is pre-tabulated on a grid. Linear interpolation is then used
to determine the instantaneous position of the tracers during the
solution of the Langevin equatiofAl). As shown inTable I,

both methods show good agreement over a wide range of PZcIeib.6

numbers.

D. Results and discussion

We now discuss some aspects of dispersion in Pnite aspect rat
channels with the help of the numerical techniques outlined above
We Prst consider the diffusive limit in the absence of any RBe (
=0), which reduces to the well-studied problem of diffusion in a cor-
rugated channel"* In this case, our previous discussions based on
FickbJacobs theory and the concept of entropic barriers still hold
When Pe= 0, the dispersion is entirely controlled by the channel
aspect ratiq and width modulation!, and trends in terms of these
two parameters are presentedinble Ill. For a Pxed width modu-
lation !, channels with larger aspect ratipsave a decreased value
of their dispersivity. This trend, which is consistent with predictions
of FickBJacobs theolymay seem counterintuitive as increasifig
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FIG. 6. Streamlines in the moving reference frame show the appearance of recir-
culation bubbles in sufpciently deformed channels. The top row shows the effect
of increasingat a bxe@l whereas the bottom row shows the effect of increasing
(atabxed.

Turning to the effects of Bow, we brst showHiy. 6some typ-
ical streamlines for different combinations bfand (. We bnd it

for a bxed increases the width of the pores, but it also leads to anconvenient to consider streamlines in the moving frame, where they
increase in the size of the entropic traps between pores. In additior@e left-right symmetric and lend themselves to an easier interpreta-

increasing the width modulation for a givehalso causes a sharp
decrease iD* for the same reason as ffig. 4 as! approaches 1,
the pore openings become increasingly small and strongly hinde
longitudinal transport.

TABLE ll. Effect of channel geometry (pararfiateds) on the dispersivil in
the pure diffusive lirRig€ 0).

Width modulation () Aspect ratio () Dispersivity D)
0.5 0.8720
0.4 0.7 0.8090
1 0.7329
0.2 0.9431
0.6 0.7 0.6400
0.8 0.4426

tion of our results. We recall that even though the Row is different
in the bxed frame, the dispersion is the same in both frames. While,
fn the lubrication limit, the Bow Pelds are always locally parabolic
according to Eq(50), the Bow features become more interesting as
the aspect rati¢ and width modulation parametér are increased.
Indeed, recirculation bubbles start to appear, as showiiin §
which are reminiscent of those occurring in shear Row over cavi-
ties’’ These recirculation regions are expected to have an effect on
tracer dispersion, as noted in previous studies on pressure-driven
Stokes Row’

The dependence of the dispersivity on the PZclet number for
various channel geometries is shownFiy. 7. The lowPebehav-
ior is identical to the diffusive limit discussed previously. The effect
of the Bow becomes noticeable fBe& 1! 10, where the dis-
persivity starts deviating from the loRe asymptote and shows
an increase withPe This change is due to shear-enhanced dis-
persion, which starts dominating the effect of molecular diffusiv-
ity. Finally, in strong Rows, the dispersivity eventually increases
as P€, corresponding to the classical Taylor dispersion liffiit.
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V. CONCLUDING REMARKS

3 T
(a) 10°F — Y =06
— 7=04 We have presented a model based on generalized Taylor dis-
— y=02 persion theory for the long-time dispersion of a passive tracer trans-
10% f ported in peristaltic Bow resulting from periodic surface undula-
D* tions of an inbnite two-dimensional channel. The model was brst
analyzed theoretically in the long wavelength limit, followed by
10t | numerical calculations using a boundary integral formulation cou-
pled to a Pnite volume method in the case of bnite aspect ratio
channels in the Stokes regime. Our results were also validated against
Brownian dynamics simulations and were shown to share many sim-
10 ] ilarities with past studies on dispersion in rigid corrugated channels.
‘ ‘ ‘ In the diffusion dominated regime (low PZclet number limit), the
107! 10° 10 102 103 small pores created by channel contractions act as entropic bar-
Pe riers, while the channel bulges act as entropic traps, leading to a
reduction in the long-time axial dispersivity in comparison with a
straight channel. When a Row is applied, the dispersivity is increased
by a mechanism analog to classical TaylorDAris dispersion, with
an O(P¢&) dependence of the dispersivity in strong Bows. Interest-
ingly, the trends in geometry are opposite to those in the diffusive
limit: channels with low aspect ratios and small pores are subject
to stronger shear (including recirculation bubbles for sufbciently
large wall deformations), which acts to further enhance long-time
dispersion.

Many biological transport processes have PZclet numbers in
the range ofPe” 10°2D18, and at the heart of all of these trans-

10%;
D*
10t}

10°% port phenomena is the competition between entropic trapping and
‘ ‘ ‘ Bow induced enhanced diffusion that is captured by our effective

107! 10° 10! 102 10° model. For example, the unicellular organigtn polycephalurhas
Pe a complex network of veins that are used to deliver nutrients. It

FIG. 7. Variation of the dispersi¥itwith the PZclet number for (a) varying chan"-‘Ch'eYeS, this by generating contracting peristaltic waves that result
nel modulatiohsat an aspect ratio{af 0.7, and (b) varying aspect rgtass N Periodic shuttle Bows. It has been reported that these Bows can
a channel modulatioh f0.5. result in a two orders of magnitude increase in the effective diffu-
sion coefbcient compared to the molecular diffusivity of nutrient
molecules.*>” Another relevant example is peristaltic transport in
the small intestine, which occurs in the advection dominated limit
The behavior of the effective dispersivity wifleis similar to that ~ with Pe" 1. It has been shown that the Bows generated due to
observed in past studies in the context of dispersion in porousthe rhythmic contraction of the walls in this system are crucial in
medial®'9*° determining the population density and transport of microbes that
Figure 7also illustrates the dependence®f on (and!. The play important roles in the health of the hostConsistent with the
trends at lowPeare consistent with the results @fble Il for the idea of Taylor dispersion, typical measurements suggest that these
diffusive limit. In stronger Bows, however, the effectg ahd! on Bows can enhance the bare molecular diffusivity by three orders of
D" are reversed: channels with the largest valueg @fid !, i.e.,  magnitude.
wide channels with large amplitude modulation exhibit the strongest It is also interesting to note that there is a simple connection
long-time dispersion. In particular, we Pnd that the increase in dis-between the peristaltic Row and the classic problem of OTaylorOs
persivity with( and! at high PZclet numbers persists after the onsetswimming sheet®®"° Taylor®s swimming sheet attains a non-zero
of recirculation bubbles in the Bow Peldsi{. . This may come swimming speed using traveling waves on its surface in contrast
as a surprise initially as one may expect the recirculation bubble t@o peristalsis where the walls are not allowed to drift. There has
act like a hydrodynamic trap. However, the increase in dispersivitypeen a considerable interest in the study of effective tracer diffu-
can be appreciated from a Lagrangian point of view. Indeed, Rowsion and advective mixing in dilute bacterial suspensitnisWe
with recirculation bubbles exhibit stronger cross-streamline velocityhave carried out leading-order asymptotics to study dispersion by a
gradients, and trapping inside recirculation zones increases the resswimming sheet in the vicinity of a wall, and the results are sim-
dence time of tracers inside the unit cell. Both of these effects, in thdar to those presented in this paper. The problem can be enti-
presence of molecular diffusion, act to, further, enhance smearing aled in good humor as Taylor dispersion by TaylorOs swimming
Lagrangian particle clouds. As a result, the asymptotic dispersivity isheeD
increased even though the pre-asymptotic time required toreachthe ~ Several other problems related to transport and dispersion
diffusive limit is longer due to the longer residence time inside thein peristaltic Bow remain to be explored. Many biological Buids
unit cell** involved in peristalsis are non-Newtonian in natureUnder long
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