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Using a geometric feedback model of the flagellar axoneme accounting for dynein motor kinetics, we
study elastohydrodynamic phase synchronization in a pair of spontaneously beating filaments with
waveforms ranging from sperm to cilia and Chlamydomonas. Our computations reveal that both in-phase
and antiphase synchrony can emerge for asymmetric beats while symmetric waveforms go in phase, and
elucidate the mechanism for phase slips due to biochemical noise. Model predictions agree with recent
experiments and illuminate the crucial roles of hydrodynamics and mechanochemical feedback in
synchronization.

DOI: 10.1103/PhysRevLett.123.208101

Studies on flagellar synchronization date back to
observations by Rothschild [1] on nearby swimming
sperms and subsequent theoretical work by Taylor [2],
who proved that dissipation for two swimming sheets is
minimized for an in-phase configuration. While biology is
often not driven by dissipation principles, it has long been
hypothesized that hydrodynamic interactions play a cen-
tral role in synchronization [3] and in collective behaviors
such as metachronal waves in ciliary arrays [4]. Over the
last two decades, experiments [5–10] using micropipette-
held Chlamydomonas have revealed that elastohydrody-
namic interactions may indeed be at play in causing its
two flagella to synchronize their breaststrokes, with
periods of asynchrony thought to arise due to biochemical
noise [10,11].
Theoretical progress in understanding synchronization is

complicated by the intricate internal structure and actuation
of the flagellum core, or axoneme. In the presence of
adenosine triphosphate, thousands of dynein molecular
motors act in concert to bend the structure and drive
spontaneous beats. Much work has gone into developing
minimal models that neglect this biological complexity and
coarse-grain flagella as microspheres driven on compliant
or tilted orbits [12–15]. More detailed numerical models
have relied on pre-imposed internal or external actuations
to analyze metachronal waves [16,17] or the bistability of
elastic filaments [18], yet these descriptions poorly capture
experimental waveforms [19]. Only recently have there
been attempts to study the role of hydrodynamics in
simplified models of active microfilaments [33].
While the detailed process leading to spontaneous flag-

ellar oscillations remains controversial, several mechanisms
have been proposed ranging from flutterlike instabilities
[34–36] to dynamic internal tension [37] and geometric
control of dynein kinetics [38–44]. The role of dynein
motors in driving oscillations of microtubules has also been
established in purified in vitro systems [45]. Building on

previous sliding and curvature control models [42–44,46],
we recently developed [47] a microscopic description for an
active elastic flagellum accounting for internal dynein motor
kinetics, which produces spontaneous oscillations following
saturation of a Hopf bifurcation and can generate a variety of
beating patterns observed in nature. In this Letter, this
microscopic model is employed to analyze the temporal
dynamics and synchronization of a pair of spontaneously
beating filaments. Our results explain synchronization in
various situations with trends consistent with experiments
[10], and underscore the crucial roles of hydrodynamic
interactions, mechanochemical feedback, and biochemical
noise.
Model formulation.—The flagellar axoneme is a 3D

structure with circular cross section composed of 9þ 2
pairs of microtubules arranged in a cyclic fashion [48].
Following past models [39,43,47,49–52], we idealize this
structure as a planar projection with diameter a and length
L, where microtubules are represented by two polar
filaments x� clamped at the base [Fig. 1(a)]. We seek
an evolution equation for the center line xðs; tÞ para-
metrized by arclength s ∈ ½0; L�. Internal actuation arises
from dynein motors that extend from each filament and
stochastically bind with the opposite one. In presence of
adenosine triphosphate, these motors move along the
filaments and generate internal shear forces resulting in
an arclength mismatch known as the sliding displacement
[52]: Δðs; tÞ ¼ R

s
0 ðj∂s0x−j − j∂s0xþjÞds0 ¼ aϕðs; tÞ, where

ϕðs; tÞ is the tangent angle and ð·Þs denotes arclength
derivative. This sliding is resisted by internal protein
linkers, or nexin links, modeled as linear springs of stiffness
K. Both dynein motors and nexin links result in equal and
opposite force densities along the filaments:

fmðs; tÞ ¼ ρðnþFþ þ n−F−Þ − KΔ; ð1Þ
where ρ is the mean motor density, n� are the fractions of
motors in the bound state, and F� are the associated loads.
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These sliding forces generate internal moments Mðs; tÞ ¼
Bϕs − a

R
L
s fmðs0; tÞds0, where the first term captures the

passive elastic response of the structure modeled as an
inextensible Euler-Bernoulli elastica with bending rigidityB
[53]. Dynein motor populations evolve as ∂tn� ¼ π� − ϵ�,
where π� and ϵ� are the attachment and detachment rates,
respectively. The attachment rate is proportional to the
fraction of unbound motors: π� ¼ π0ð1 − n�Þ. The detach-
ment rate depends linearly on the fraction of bound motors
and exponentially on the carried load [54,55]: ϵ� ¼
ϵ0n� expð�F�=fcÞ, where fc is a critical load above which
rapid unbinding occurs. To complete the model with the
appropriate geometric feedback, we specify a force-velocity
relation for the dyneins [43,56]: we assume that the motors
have a velocity v0 at zero load that decreases linearly with
slidingvelocityΔt ≡ aϕt and are able to carry a loadf0when
stalled, yielding the expression F� ¼ �f0ð1 ∓ Δt=v0Þ.
Motion of the center line is governed by the force balance

for an elastic rod in viscous flow [57]: ∂sFe þ fv ¼ 0, where
Feðs; tÞ ¼ σt̂þ Nn̂ is the elastic force with tension σ and
normal force N, and fvðs; tÞ is the viscous force density
captured by nonlocal slender body theory [58,59]. This is
accompanied by a moment balance in the z direction:
Ms þ N ¼ 0. Scaling lengths by L, sliding displacement
by a, time by the correlation timescale τ0 ¼ 1=ðπ0 þ ϵ0Þ,
elastic forces byB=L2, andmotor loads by ρf0 produces four
dimensionless groups, of which two are of primary interest:
(i) the sperm number Sp ¼ Lð8πν=Bτ0Þ1=4, where ν is the
viscosity, compares the relaxation time of a bendingmode to
the motor correlation time; (ii) the activity number μa ¼
aρf0L2=B compares motor-induced sliding forces to char-
acteristic elastic forces. The two other dimensionless groups
are μ ¼ Ka2L2=B and ζ ¼ a=ðv0τ0Þ [47]. With these scal-
ings, the dimensionless equations for ϕðs; tÞ read

σss −
�
1þ ck

c⊥

�
Nsϕs − Nϕss −

ck
c⊥

σϕ2
s

¼ ckðϕsudn − ∂sudt Þ; ð2Þ

Nss −
c⊥
ck

Nϕ2
s þ σϕss þ

�
1þ c⊥

ck

�
σsϕs

¼ c⊥ðSp4ϕt − udt ϕs − ∂sudnÞ; ð3Þ

ϕss þ μafm þ N ¼ 0; ð4Þ

where the first two equations are force balances in the
tangential and normal directions while the third is the
moment balance. The dimensionless tangential and normal
drag coefficients ck;⊥ derive from local terms in slender body
theory [47] and satisfy c⊥=ck → 2 for infinitely slender
filaments. Hydrodynamic interactions are captured by the
disturbance velocity ud, with projections udt and udn in the
tangential and normal directions, respectively. Given two
filaments indexed by fα; βg, the flow is obtained as

udðsαÞ ¼ K½fαe �ðsαÞ þ
Z

1

0

Gðsα; sβÞ · fβeðsβÞdsβ; ð5Þ

where fe ≡ ∂sFe is the elastic force density. The first term in
Eq. (5) is the finite-part integral of slender body theory
[47,58,59] and captures hydrodynamic interactions within a
filament. The second term accounts for the flow induced by
the other filament, with the Green’s functionGðsα; sβÞ given
by the Oseen tensor. These equations are supplemented by
clamped boundary conditions at s ¼ 0, and moment- and
force-free conditions at s ¼ 1 [47]. In dimensionless form,
the evolution equation for the boundmotor populations reads

∂tn� ¼ ηð1− n�Þ− ð1− ηÞn� exp ½f�ð1∓ ζΔtÞ� þ ξðs; tÞ;
ð6Þ

where η ¼ π0=ðϵ0 þ π0Þ is the fraction of time spent by
motors in the bound state and f� ¼ f0=fc is the ratio of
the stall load to the characteristic unbinding force. The last
term accounts for biochemical noise with hξðs; tÞi ¼ 0

and hξðs; tÞξðs0; t0Þi ¼ 2Λδðs − s0Þδðt − t0Þ, where Λ is an

FIG. 1. (a) Schematic representation of the planar model for the flagellar axoneme. (b)–(d) Spontaneous beating patterns emerging
from the nonlinear model that approximate the waveforms of sperm, cilia, and Chlamydomonas. (e)–(g) Synchronization of different
beating patterns. The top panel shows snapshots at t ¼ 0 and the bottom panel illustrates the final configurations. Sperms (e) beat in
phase, while cilia (f)–(g) can achieve both IP or AP synchronization depending on the orientation of the power stroke indicated by red
arrows. Synchronization for Chlamydomonas (not shown) is identical to that of cilia. See movies showing the temporal dynamics in the
Supplemental Material [19].
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effective temperature. These governing equations are solved
numerically as outlined in Ref. [47].
Spontaneous oscillations.—We first describe the dynam-

ics of isolated filaments, with model parameters estimated
from experiments [43,46,47]; see Supplemental Material
[19] for details. With a choice of L ∼ 50 μm for human
sperm, B∼0.9–1.7×10−21Nm2, f0∼1–5pN, τ0∼50ms,
and ρ ∼ 103 μm−1, we estimate Sp ∼ 8–20 and μa ∼
2–10 × 103 and explore beating patterns in this range.
For a given sperm number, a Hopf bifurcation occurs
beyond a critical activity level μca and gives rise to
spontaneous traveling waves [19,47]. Close to the bifurca-
tion, the waves propagate from the free end towards the
base as previously seen in other simulations of sliding
control models [43,46] but in disagreement with typical
sperm beating patterns. However, far from the bifurcation,
nonlinearities give rise to a reversal in the direction of
propagation [47], with spermlike waveforms shown in
Fig. 1(b) that resemble experiments [50] and have beating
frequencies f ∼ 10–15 Hz. In the following discussion,
we focus on this anterograde propagation regime as it is
biologically most relevant.
Asymmetric beating patterns more typical of cilia can be

captured by setting different attachment and detachment
rates for the motor populations on x� [47]. This bias in the
kinetics allows the flagellum to bend in one direction
preferentially, resulting in asymmetric power and recovery
strokes as shown in Fig. 1(c). The flagella of wildtype
Chlamydomonas also have a static mode of deformation
[42] that we account for using a spontaneous shape ϕ0ðsÞ.
To better approximate their asymmetric breaststrokes
[Fig. 1(d)], a curvature control mechanism is introduced
along with the biased kinetics [47] that uses a generalized
Bell’s law for the dynein detachment rate: ϵ� ¼ ϵ0n�
exp fF�=fc � ½κðsÞ − ϕ0

sðsÞ�=κcg, where κðsÞ is the curva-
ture and κc is the threshold value for rapid dissociation.
The subtraction of the zero mode in the curvature control
follows Sartori et al. [42], who suggested that motor forces
respond to derivatives of curvature rather than curvature itself.
Accounting for the short length L ∼ 6–15 μm [42] of cilia
andChlamydomonas flagella withB ∼ 0.5–5 × 10−22 Nm2,
we estimate Sp ∼ 2–3 and measure spontaneous frequencies
of f ∼ 10–20 Hz.
Pair synchronization.—We first focus on the synchro-

nization of pairs of sperms placed side by side as shown in
Fig. 1(e). We initialize the simulation in the absence of
interfilament hydrodynamic interactions (HI) by letting
spontaneous oscillations reach steady state after saturation
of dynein kinetics. The initial configuration is chosen such
that the filaments are almost in antiphase (AP) [top panel of
Fig. 1(e)]. We then switch on HI and, after several periods,
the sperms go in phase (IP) and remain phase locked
thereafter [bottom panel of Fig. 1(e); see movies in
Ref. [19] ]. The key role of hydrodynamics in this process
is best illustrated by Fig. 2, showing the evolution of the

bound motor populations nþ at s ¼ 1=4 on both filaments
(the behavior is identical for n− and at other locations).
Before HI are switched on, motor populations are
uncoupled and undergo periodic oscillations in antiphase
with cusp-shaped waveforms typical of motors far from
equilibrium [60] and only a small fraction of bound motors
at any given time. Once HI start acting, both the phase and
amplitude of the motor populations change. This is attrib-
uted to elastic deformations of the filaments in their
induced flow fields, which feed back to the kinetics through
the change in sliding displacement and velocity. As seen in
Fig. 2, the two motor populations rapidly go in phase with a
marginally increased amplitude, resulting in spontaneous
IP synchronization of the beating patterns. The cartoon in
Fig. 2 highlights this cyclic process fundamental to
elastohydrodynamic synchronization, by which HI affect
beating patterns via geometry-dependent motor kinetics.
This feedback is most dramatic when the filaments are
close by and sufficiently flexible.
A similar mechanism is at play for asymmetric ciliary

beats in Figs. 1(f), 1(g). When the power strokes of the two
cilia indicated by red arrows point in the same direction, an
IP beat emerges with net unidirectional pumping of the
fluid [Fig. 1(f)]. When the power strokes are in opposite
directions, our model leads to AP synchronization with
beating patterns resembling a “freestyle” swimming gait as
shown in Fig. 1(g). Similar AP patterns are obtained for
Chlamydomonas beats. These observations hint at the
hypothesis [61] that the IP breaststrokes seen in wildtype
cells result from elastic basal couplings between the two
flagellar axonemes rather than from HI alone. Indeed,
experiments with vfl mutants that are deficient in these
filamentary connections [61] or with Volvox cells held in
separate micropipettes [10] have shown AP synchroniza-
tion for power strokes with opposite orientations, consistent
with our model findings. Note that in the case of swimming
or even weakly clamped cells flagellar synchronization can
also happen through a rocking motion of the cell body
independent of HI or in the absence of basal coupling
[62–66]. The relative importance of these mechanisms
remains to be explored for the various asymmetric wave-
forms [66] arising in our model.

FIG. 2. Evolution of dynein motor populations at s ¼ 1=4 on
two nearby sperms as a result of HI. The dashed line indicates the
instant when interactions are turned on. Time is scaled by the
oscillation period T of an isolated filament. Cartoon on the right
illustrates the feedback loop leading to synchronization.
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For a more quantitative analysis of synchronization, we
introduce a definition of the phase ψ of a waveform. To this
end, we perform the Hilbert transform of the continuous
periodic time series βðtÞ ¼ ϕð1=2; tÞ, providing the ana-
lytic continuation ζðtÞ ¼ βðtÞ þ iβ̂ðtÞ, where β̂ðtÞ≡
ð1=πÞ R∞−∞ βðτÞ=ðt − τÞdτ. The phase of the waveform is
then calculated as ψðtÞ ¼ arctan½β̂ðtÞ=βðtÞ�, and we use an
appropriate geometric gauge to define a true phase that
grows monotonically with time [67]. The phase difference
δðtÞ ¼ ψ1 − ψ2 for two nearby sperms going from AP to IP
is shown in Fig. 3(a) and decays to zero over the course of
several periods. In spite of the complexity of the governing
equations in presence of HI, the phase difference is well
described by a simple low-dimensional Adler equation as in
past experiments with Chlamydomonas [7] and in minimal
rotor models [13–15,19]. Here, we seek a two-parameter
equation of the form

_δ ¼ ϵ sin δþ α sin 2δ; ð7Þ
where constants ϵ, α are estimated numerically. A solution
to this equation follows the numerical data very well in
Fig. 3(a). In all our computations, we find that jϵj ≫ jαj
and thus define jϵj as the effective coupling strength in
accordance with minimal models of rotors [19]. When
plotted as a function of interflagellar distance d in Fig. 3(b),
jϵj shows a far-field algebraic decay of 1=d over the limited
range of accessible values, which is a signature of the
dominant Stokeslet HI and can be rationalized from a
simple rotor model [19]. A slower decay is seen at short
separations, where complex near-field interactions take
place. Stronger coupling arises for symmetric spermlike
beats than for ciliary beats, primarily due to the longer
lengths of sperm flagella. For cilia, we also find that jϵjIP >
jϵjAP in agreement with experiments [10], which can be
attributed to the fact that filaments spend more time close to
one another during IP beats and thus interact more strongly.
Intrinsic to the kinetics ofmolecularmotors is biochemical

noise, which alters the precise notion of synchronization.

To probe its effects, we study the long-time statistics of the
phase difference in the presence of noise for spermlike
waveforms in Fig. 4(a). Fluctuations follow a Gaussian
distribution centered around the mean IP configuration of
δ ¼ 0, with a variance scaling linearly with separation
distance d. This is a consequence of the 1=d decay of
the coupling strength jϵj and is further corroborated by the
collapse of the distributions under the rescaling δ → δ=

ffiffiffi
d

p
in Fig. 4(b) [10]. We model the noisy phase dynamics by a
stochastic Adler equation _δ ¼ ϵ sin δþ χðtÞwith hχðtÞi ¼ 0
and hχðtÞχðt0Þi ¼ 2Dδðt − t0Þ, where D is the phase diffu-
sivity with units of s−1. Associated with theAdler equation is
a Fokker-Planck description for the probability distribution
PðδÞ of the phase difference, with steady-state solution given
by PðδÞ ¼ expð−ϵ cos δ=DÞ=2πI0ðjϵj=DÞ, where I0 is the
modified Bessel function of order zero and where we
estimate D numerically [47,68]. The interaction potential
UðδÞ ¼ − lnPðδÞ, which is2π periodic, is shown in Fig. 4(d)
for increasing noise levels.When noise isweak, the filaments
remain phase locked and fluctuate around the IP configura-
tion, which translates into a deep potential well at δ ¼ 0.
With increasing noise, the potential well flattens as devia-
tions from perfect AP synchrony become more frequent and
intense. Occasionally, accumulated noise allows the fila-
ments to gather a complete phase of 2π, causing them to

FIG. 3. (a) Evolution of the phase difference δðtÞ during
synchronization of two nearby symmetric waveforms and com-
parison to the Adler equation (7). Fitting parameter values: ϵ ¼
−1.02 and α ¼ 0.15, with a standard deviation of �0.01.
(b) Coupling strength jϵj as a function of interflagellar distance
d for various beating patterns.

FIG. 4. (a) Gaussian distributions of the fluctuations of the
phase difference for varying separation distance d. (b) Collapse of
the distributions in the rescaled variable δ=

ffiffiffi
d

p
. (c) Long-time

evolution of δðtÞ for increasing biochemical noise Λ at a fixed
separation distance d, showing the emergence of slips. (d) Effec-
tive interaction potential UðδÞ estimated from the statistics
(symbols) and compared to the Fokker-Planck prediction (lines).
The diffusivity values for increasing noise levels are D ¼ 0.11,
0.33, 0.58.
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“slip” towards δ� 2π. These slips are visible in the phase
trajectories of Fig. 4(c) and can be interpreted as thermally
assisted hops between neighboring wells in the flattened
periodic potential. In absence of frequency mismatch, slips
are equally probable in�2π, and the stochastic Adler model
predicts a frequency of G ¼ DjI0ðjϵj=DÞj−2=4π2 [68].
Using the computed value of D, this prediction indeed
provides a quantitative estimate of the mean frequency of
slips in full simulations; see Supplemental Material [19].
Concluding remarks.—We have used an idealized planar

model of the flagellar axoneme that captures the essential
physics of internal dynein activity and produces sponta-
neous oscillations similar to those seen in nature [19] to
elucidate elastohydrodynamic synchronization of nearby
flagella and cilia. Our simulations underscore the essential
roles of hydrodynamic interactions and associated mecha-
nochemical feedback in enabling synchronization. Our
model predictions for various beating patterns and orien-
tations all agree with experiments and give credence to a
combination of sliding and curvature control mechanisms
for the generation of spontaneous beats. We were also able
to reproduce experimentally observed phase slips induced
by biochemical noise. Future studies with our model will
probe the role of elastic basal couplings [61], swimming
cells that are free to adjust phase by sliding past one another
[69] or by rotational motion of their body [64,66], and
emergent dynamics in large-scale ciliary arrays.
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