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Trapping, gliding, vaulting: transport of
semiflexible polymers in periodic post arrays†

Brato Chakrabarti,ab Charles Gaillardac and David Saintillan *a

The transport of deformable particles through porous media underlies a wealth of applications ranging

from filtration to oil recovery to the transport and spreading of biological agents. Using direct numerical

simulations, we analyze the dynamics of semiflexible polymers under the influence of an imposed flow

in a structured two-dimensional lattice serving as an idealization of a porous medium. This problem has

received much attention in the limit of reptation and for long-chain polymer molecules such as DNA

that are transported through micropost arrays for electrophoretic chromatographic separation.

In contrast to long entropic molecules, the dynamics of elastic polymers results from a combination of

scattering with the obstacles and flow-induced buckling instabilities. We identify three dominant modes

of transport that involve trapping, gliding and vaulting of the polymers around the obstacles, and we

reveal their essential features using tools from dynamical systems theory. The interplay of these

scattering dynamics with transport and deformations in the imposed flow results in the long-time

asymptotic dispersion of the center of mass, which we quantify in terms of a hydrodynamic dispersion

tensor. We then discuss a simple yet efficient chromatographic device that exploits the competition

between different modes of transport to sort filaments in a dilute suspension according to their lengths.

1 Introduction

The transport of clouds of particles through complex structured
media underlies a variety of important physical processes
in both nature and industry. Examples range from the spreading
of contaminants in porous media1 to solute transport in biofilms2

to the dispersion of engineered drugs inside tumors3 to
membrane filtration processes. These problems often involve
the spreading of an initially concentrated collection of particles
as they are transported through the tortuous geometry under the
action of an external flow or force and in the presence of
molecular diffusion. For a large number of such problems, the
long-time transport process can be described by a mean velocity U
and effective hydrodynamic dispersion tensor D that depend on
the microtransport dictated by flow topologies, physiochemical
processes and geometry of the microstructure. The theoretical
description of these asymptotic transport coefficients forms the
basis of macrotransport theory4 that serves as the backbone of

many industrial applications ranging from filtration to the design
of chromatographic devices.

Even though the macrotransport theory of point-like passive5

and active6 Brownian particles in porous media is well developed,
modeling the transport of elongated or deformable finite-size
particles remains a challenge due to non-trivial particle–obstacle
interactions and excluded volume effects. Perhaps one of the
earliest examples where this problem shows up is in the cele-
brated reptation theory of de Gennes,7 which is concerned with
the thermal motion of a long linear polymer chain past fixed
obstacles serving as a model of entangled macromolecules in
polymer melts.8 The diffusion of stiffer semiflexible filaments in
porous media has also been shown to follow the reptation picture,
albeit with different kinetic exponents.9 Understanding the trans-
port of flexible polymers in porous media under the application
of external forces also has extensive applications in chromato-
graphic device designs for long-chain DNA molecules.10,11 Fast
and efficient size-dependent separation of DNA molecules plays
an important role in their mapping and sequencing, both crucial
for genomic analysis.12 Compared to classical gel-based electro-
phoretic separation, modern microfluidic chromatographic devices
have proven to be much more efficient for these problems.13

In these devices, DNA molecules are transported in a 2D lattice
of structured microposts under the application of an external
electric field. The DNA repetitively collides with the posts of the
array, with a size-dependent collision time leading to rapid
separation.14 DNA molecules have a persistence length cp that is
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much smaller than their contour length L, with dynamics governed
by a competition between stretching and entropic preference of a
coiled state. During transport, the molecules hook and unhook
from the microposts with dynamics similar to a rope over pulley
and conformations resembling various English alphabets, which
have been studied extensively in experiments, simulations and
through continuous time random walk models.14–21

Contrary to long-chain polymer molecules, the dynamics of
semiflexible polymers with L B cp is dominated by a competi-
tion between local bending forces, line tension that enforces
inextensibility, and thermal fluctuations. These make way for
a number of buckling instabilities and lead to non-trivial
filament conformations that have been well characterized in
unbounded flows.22–25 Filament transport has also been studied
in cellular flows where an instability-driven stretch-coil transition
can lead to diffusive or sub-diffusive transport of the center-of-
mass.26–28 However, the dynamics of stiff polymers in structured
porous media has received little attention, with most studies
restricted to the limit of reptation.9,29 Understanding their trans-
port in crowded environments is relevant for stiff biopolymers
such as actin and microtubules,30 for the locomotion of micro-
organisms through granular materials31 and for biological agents
having the potential to maximize their transport through inter-
actions with their local environment.32

In this paper, we use direct numerical simulations to study
the transport of semiflexible polymers modeled as fluctuating
inextensible Euler elastica through a two-dimensional periodic
lattice of circular obstacles under a pressure-driven flow. We
aim to characterize the essential features of transport, which
results from the coupling between deformations due to dynamic
buckling and polymer–obstacle scattering, leading to a diffusive
behavior at long times. This is in contrast to active filaments that
exhibit sub-diffusive transport in disordered media as shown
recently in numerical simulations.30 In Section 2, we discuss the
theoretical model for the fluctuating polymer and its dynamics in
the lattice. In Section 3, we identify three main modes of polymer
transport and describe how they can be used to explain asymptotic
hydrodynamic dispersion. In Section 4, we build on our under-
standing of polymer–obstacle interactions to propose a simple
design of a chromatographic device that is able to sort polymers
based on their lengths. We conclude in Section 5.

2 Problem formulation and methods
2.1 Polymer and lattice models

We study the dynamics, conformations and long-time asymp-
totic transport of semi-flexible polymers with L B cp through a
doubly periodic two-dimensional porous medium under the
influence of an imposed flow. The porous medium, as shown in
Fig. 1, is idealized as an infinite lattice comprised of rigid
circular obstacles of diameter a. The distance between succes-
sive pillars l is identical in the x and y directions resulting in a
representative square unit cell. The ordered array is charac-
terized by its porosity e = Sf/St, or ratio of the fluid area Sf of a
unit cell over its total area St.

The semiflexible filaments are modeled as inextensible
slender elastic rods of length L with circular cross-section of
diameter d. The centerline of the polymer is represented as a
space curve parameterized by arclength s and identified by a
Lagrangian marker x(s,t). Filament dynamics are modeled
using local slender body theory33–35 as

8pm
@xðs; tÞ
@t

� uðxðs; tÞÞ
� �

¼ �L � f; (1)

where m denotes the viscosity of the fluid, u is the velocity of the
imposed flow, L is the local mobility operator, and f is the force
per unit length exerted by the filament on the fluid. We note
that this leading-order anisotropic drag model neglects inter-
filament and filament–obstacle hydrodynamic interactions;
we discuss this approximation further in Section 5. The
configuration-dependent local operator is given by:

L(s) = (2 � c)I � (c + 2)xsxs, (2)

where subscript s denotes differentiation with respect to arc-
length and xs is the local tangent vector. c is an asymptotic
geometric parameter that depends on the slenderness of the
filament and is defined as c = �ln(a2e) where a = d/L. For the
chosen model of elasticity, the force density is given by:

f = Bxssss � (sxs)s + fBr, (3)

where the first term is typical of Euler–Bernoulli beam theory with
bending rigidity B. The inextensibility of the filament results in a
metric constraint xs�xs = 1, which gives rise to the second term
where s acts as a Lagrange multiplier and can be interpreted as the
internal line tension. The third term accounts for Brownian
fluctuations and obeys the fluctuation-dissipation theorem:

hfBr(s,t)i = 0, (4)

fBrðs; tÞfBrðs0; t 0Þ
� �

¼ 2kBTL�1dðt� t 0Þdðs� s0Þ; (5)

where kB is the Boltzmann constant and T is temperature. The
persistence length cp = B/kBT characterizes the distance along
the centerline over which the unit tangent vector loses correla-
tion with itself.

Fig. 1 Schematic of the 2D porous lattice and a representative unit cell.
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The imposed fluid velocity u(x) is taken to be that induced by
a macroscopic pressure gradient applied across the array, with
a far-field velocity of uN. The velocity field inside the unit cell is
obtained numerically by solving the Stokes equations using the
boundary integral method with an appropriate choice of
Green’s function.6,36 Computed streamlines for two represen-
tative cases are shown in Fig. 2, where the flow topologies are
found to be governed by the distance between obstacles l and
the incidence angle Y made by the applied flow with respect to
the x direction.

In the following, we non-dimensionalize all the equations
using the diameter a of the pillars as the characteristic length
scale, uN as the velocity scale for the applied flow, B/L2 as the

scale for elastic forces,
ffiffiffiffiffiffiffiffiffiffi
L=‘p

p
B=L2 as the scale for Brownian

forces,27 and the relaxation time of the polymer t = 8pmL4/Bc as
time scale. With these choices, the dimensionless governing
equation is given by:

@xðs; tÞ
@t

¼ �muðxðs; tÞÞ � L

a
L � xssss � sxsð Þs þ

ffiffiffiffiffiffiffiffiffiffi
L=‘p

q
n

� �
: (6)

Two important dimensionless numbers appear. The elastovis-
cous number �m = 8pmL4uN/Bac compares the time scale of
bending relaxation to the characteristic inverse shear rate
a/uN, and serves as an effective measure of the strength of
the applied flow. The ratio cp/L captures the magnitude of
thermal fluctuations, with the limit of cp/L - N describing
Brownian rigid rods. n is a Gaussian random vector with zero-
mean and unit variance. As mentioned previously, the resulting
dynamics depend strongly on the flow topology and geometry
of the microstructure. This is characterized by three additional
dimensionless parameters:

L

a
; e ¼ 1� pa2

l2
and Y; (7)

where L/a compares the filament length to the obstacle diameter,
e is the porosity and Y is the mean direction of the applied flow
with respect to the x axis. In all the results presented in the paper,
we set cp/L = 20, and focus on the effects of flow strength and lattice
geometry. We also restrict our results to L/a = 0.7 until the

discussion of polymer sorting in Section 4, where the effect of
contour length is examined.

2.2 Numerical method

Associated with eqn (6) are force- and moment-free boundary
conditions that translate to s = xss = xsss = 0 at s = 0, L/a.
We exploit the inextensibility condition to solve for the
unknown line tension s and use an implicit–explicit time-
marching scheme to solve (6) with the appropriate boundary
conditions; details of the methods can be found elsewhere.24,34

The typical integration time step was in the range of Dt =
2 � 10�9–10�7 in dimensionless units. Our computational
model for the polymer was validated by comparing it to well-
known equilibrium properties of semiflexible polymers,37

details of which can be found in ref. 38. To study asymptotic
transport properties, we averaged over 150 filament trajectories
over a distance of 700 unit cells. In order to facilitate fast
computation, the interstitial velocity field u(x) was tabulated on
a Cartesian mesh, and bilinear interpolation was used subse-
quently. Due to the symmetry of the lattice geometry and
linearity of Stokes flow, we computed the velocity in only one
quadrant of the unit cell on a Cartesian grid of 250 � 250 mesh
points.

Central to the present study is the prescribed mechanism of
polymer–pillar scattering. For this, we allow the filaments to
have tangential motion past the obstacles, resulting in a gliding
behavior. Motions into the pillars are avoided by a smooth
hydrodynamic repulsion force as first proposed by Evans
et al.,39 which efficiently prevents filament penetration. Details
of the contact algorithm are described in the Appendix.

3 Results and discussion
3.1 Pore-scale dynamics and modes of transport

We begin with a qualitative discussion of the key features of
individual filament dynamics at the pore scale, which are
expected to dictate long-time transport properties. The
dynamics of elastic filaments in unbounded linear flows were
characterized in detail in our previous work24,25 and provide a
basis with which to compare dynamics in the present problem.
In a weak shear flow, a Brownian fiber typically tumbles quasi-
periodically in what is reminiscent of the classical Jeffery
orbits.40 Increasing the elastoviscous number �m triggers a
sequence of buckling instabilities that result in transient C
and U shaped conformations. In a porous lattice, shear is
generated between pillars and can also cause tumbling and
buckling, though velocity gradients are typically non-uniform
on the scale of the filament. In addition, scattering dynamics
through the lattice allow for more complex motions, where a
filament can now deform and buckle while interacting with
obstacles even in relatively weak flows. In the explored para-
meter space, we identified three dominant modes of transport,
which we illustrate in Fig. 3 and Supplementary Videos (ESI†)
and whose qualitative features are as follows:

Fig. 2 Flow streamlines inside a unit cell for two different lattice porosities
and mean incidence angles of the applied flow.
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� Trapping: During transport, a filament can wrap around
the circular obstacles as shown in Fig. 3(a), resulting in periods
of prolonged trapping. As expected, these trapping events are
more frequent for long polymers or in strong flows through
densely packed lattices. When a filament gets trapped, it then
relies on Brownian motion for shape fluctuations, which allow
it to escape by sliding in either direction along the obstacle.
� Gliding and squeezing: Irrespective of the filament length

and porosity of the lattice, a polymer can glance or slide past
obstacles. In dense beds, this results in a squeezing mode as
illustrated in Fig. 3(b). The incidence angle Y of the incoming
flow plays an important role in the selection between trapping
and gliding. For Y = 0 or p/2 the filaments almost always avoid
being trapped and can get locked in the squeezing mode
of transport with quasi-periodic dynamics as we reveal in the
subsequent discussions.
� Vaulting: Finally, below the threshold of buckling, we

observe Brownian vaulting of the filaments. These vaults, as
shown in Fig. 3(c), are distinct from Jeffery orbits in unbounded
flows. In this mode, a filament uses its contact point with a
pillar as a hinge to slide, rotate and move forward in a fashion
similar to what is observed during the sedimentation of fibers
near walls41 or the transport of fibers in strongly confined
microchannels.42

Note that in most cases a combination of multiple modes of
transport is observed along filament trajectories, with alternat-
ing trapping, gliding and vaulting events. As we explain next,
the relative proportion of various modes strongly depends on
incoming flow angle as well as lattice geometry and flow
strength, and can be exploited for filament separation as
discussed in Section 4.

3.2 Probability distributions and filament trajectories

With our understanding of the three dominant modes of
transport, we now proceed to discuss the main features of
filament trajectories as a function of the various dimensionless
numbers. We first consider the probability distribution func-
tion of the entire polymer chain inside a representative unit
cell. The distribution is computed by averaging over all the unit
cells visited by the polymer and is subsequently normalized to
unity. Fig. 4(a)–(c) shows this distribution in a dense lattice for
different incidence angles Y of the applied flow. We notice that
for Y = 0 and p/4 this distribution has a mirror symmetry with
respect to the flow direction. As discussed previously and also
evident from Fig. 4(a), we find that for Y = 0 the filament is
locked in a squeezing mode between two rows of pillars and
primarily relies on gliding between the obstacles to move
forward. This is further highlighted in Fig. 4(d) showing the
associated center-of-mass (COM) distribution of the polymer.
The COM distribution peaks at the symmetry plane of the
lattice and is vanishingly small elsewhere inside the unit cell.
This further corroborates the caged dynamics of the polymer
and underscores its inability to diffuse in the vertical direction
with the spaces between pillars acting as entropic traps.43

Gliding still remains the primary mode of transport for
Y = p/4, however the dynamics is not caged in this case. Due
to symmetry, the filament can glide either in the x or y direction
with equal probability, resulting in the distribution shown
in Fig. 4(c) that bears resemblance with the streamlines of
the flow.

A transition to the trapping mode is observed when the
incidence angle is Y = p/6. The lack of symmetry in this case
results in chaotic scattering dynamics with frequent trapping
events around the obstacles. This is evident in Fig. 4(b) where
the distribution peaks only in the vicinity of the pillar. The
accompanying COM distribution in Fig. 4(e) shows a peak
inside the obstacle, corresponding to configurations where
the polymer is wrapped around the pillar, a characteristic
feature of the trapping mode as shown in Fig. 3(a). A similar
transition from gliding to trapping also takes place as a func-
tion of flow strength. This is illustrated in Fig. 5, where we show
the COM probability distribution for two different values of �m with
Y = p/6. While in weak flow both trapping and gliding contribute to
transport, we find that the polymer remains predominantly trapped
in stronger flows. The dominant mode of transport in this case is
selected from a competition between flow-induced buckling
instabilities favoring deformed conformations and sliding resulting
from filament–obstacle interactions.

These features of the scattering process are further revealed
in Fig. 6, where we display distributions of successive filament
conformations overlaid by subtracting the instantaneous COM.
Fig. 6(a) now clearly captures the caged behavior of the filament,
where we observe two dominant conformations, both resembling
the rotated letter U, one more concave than the other. As the
filament squeezes between two rows of pillars, it oscillates
between these two dominant shapes in a breathing pattern.
Conformations for angle Y = p/4 exhibit a sweeping pattern
spanning an angle of p/2 that results from symmetric gliding in

Fig. 3 Typical filament conformations and modes of transport: (a) trap-
ping, (b) gliding, and (c) vaulting. The arrows indicate possible directions of
motion.
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the horizontal and vertical directions. The chaotic scattering
process for Y = p/6 is captured in Fig. 6(b), where we observe
a zoo of conformations with no distinct peak, hinting at the
randomness of the process.

To further characterize these dynamics, we introduce the
gyration tensor of the filament defined as:

GijðtÞ ¼
1

L

ðL
0

xiðs; tÞ � �xiðtÞ½ � xjðs; tÞ � �xjðtÞ
	 


ds; (8)

where %x(t) is the filament COM. The angle f between the mean
filament orientation and the flow direction is provided by the

eigenvector of Gij associated with the dominant eigenvalue.24

Fig. 7 shows the power spectral density of f(t) as a function of
dimensionless frequency. We first vary the incoming flow angle
in Fig. 7(a). For Y = 0, we notice that there are two sharp peaks
in the power spectral density that can be mapped back to the
filament breathing between two dominant conformations in an
almost time-periodic trajectory. For Y = p/4, we observe multiple
peaks in the spectrum indicative of quasi-periodicity44 that results
from gliding of several repeating conformations in the lattice.
Both Y = p/6 and Y = p/8 are characterized by a broad power
spectrum with no clear peaks. This is a signature of chaotic

Fig. 5 (a–c) Probability distribution of overlayed filament conformations with their COM at the origin, for different incidence angles Y of the flow.
The red circle with diameter L/a = 0.7 represents the allowable spread of the filament. Parameter values are as in Fig. 4.

Fig. 4 (a–c) Probability distribution of the polymer chain for different incidence angles Y of the applied flow. (d–f) Probability distribution of the polymer
center of mass for the same angles. The black circle represents the circular pillar. Parameter values: L/a = 0.7, e = 0.45 and �m = 8 � 103.
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trajectories that result from trapping of filaments around
obstacles with a large distribution of stopping times. In Fig. 8(b),
we keep the angle of the incoming flow fixed at Y = p/4 but vary the
length of the polymer. The short filament does not deform and
performs vaulting around the obstacles, which results in two peaks
in the power spectrum. Surprisingly the longer filament, while
exhibiting a broad power spectrum, performs a distinct periodic
motion with a well-defined peak. In this regime, we find that
the filament adopts coiled conformations that are preserved as
the filament gets transported through the lattice. Finally, for

the intermediate length we observe the quasiperiodic trajec-
tories already described above.

3.3 Asymptotic transport and hydrodynamic dispersion

We now turn to long-time transport properties and focus more
specifically on the asymptotic dispersivity, a symmetric tensor
defined as

D ¼ 1

2
lim
t!1

d

dt
SðtÞ: (9)

S(t) is the mean-square displacement (MSD) dyadic given by

SðtÞ ¼ xðtÞ � xðtÞh ixðtÞ � xðtÞh i½ �h i; (10)

where %x(t) is the instantaneous filament center-of-mass position
and h�i denotes the ensemble average. We have computed SðtÞ
for different parameter values by averaging over more than a
hundred filament trajectories spanning thousands of unit cells.
We first present results for two representative cases with Y = 0
and Y = p/6 in Fig. 8, allowing to relate the microscopic
dynamics to macroscale transport properties. Fig. 8(a) shows
the two relevant components of the MSD as functions of time in
the case of Y = 0. Several interesting features stand out. During
an initial transient, both Sxx and Syy start to grow, as the
filaments are prepared in different configurations at t = 0 and
thus follow their own initial path. Soon, all the filaments enter

Fig. 6 Probability distribution function of the polymer COM for two
different flow strengths �m. Parameter values are as in Fig. 4 with Y = p/6.

Fig. 7 Power spectral density of the mean orientation angle f(t) of the
filament with respect to the flow direction as a function of dimensionless
frequency, for different flow orientations (a) and lengths of the polymer (b).
Parameter values are as in Fig. 4.

Fig. 8 Components of the mean squared displacement tensor as functions
of time for: (a) Y = 0 and (b) Y = p/6. Parameter values are as in Fig. 4.
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nearly periodic trajectories in the squeezing regime as discussed
in the previous section: in this regime, they all move ballistically at
nearly the same velocity and with hardly any dispersion, leading
to a plateau in Sxx and Syy (recall that the mean motion is
subtracted when calculating the dispersion tensor). At later times,
however, we observe that Sxx starts growing again with a linear
time dependence indicative of diffusive transport, while Syy

maintains the same plateau value. The complete saturation of
Syy results from the caged dynamics that restrict the filaments
between rows of pillars and strongly hinder any transverse motion
other than that due to molecular diffusion as we observed in
Fig. 4(d). This caging effect, however, is not present in the x
direction, and we attribute the linear growth of Sxx at long times
to shear-induced Taylor dispersion following the classical mecha-
nism first proposed by Taylor.45 This mechanism is supported by
the observed increase in the dispersivity with flow strength �m in
Fig. 9(a), though computational limitations prevented us from
identifying a clear scaling with �m in strong flows, as one would
expect to have for Taylor dispersion.1,5,45 We expect that on
extremely long time scales molecular diffusion acting in the
transverse direction may ultimately result in an increase in Syy

in Fig. 8(a), though this regime is not easily captured within the
finite duration of our simulations. The situation is quite different
for Y = p/6 as shown in Fig. 8(b), where all three components
specifying S are found to grow linearly with t in the asymptotic
limit. The pre-asymptotic time is also shorter in this case as the
filament is able to sample the unit cell efficiently through its
chaotic dynamics.

For an arbitrary incoming flow angle, the dispersion tensor
is non-diagonal and can be expressed as D = D1e1e1 + D2e2e2,
where (D1, D2) are its eigenvalues with corresponding eigen-
vectors (e1, e2). In this case, we quantify dispersion by the
maximum eigenvalue Dmax = max(D1, D2), which dictates the
maximum rate of spreading of a dilute cloud of filaments.
The dependence of Dmax on flow strength is shown in Fig. 9(a)
in lattices with varying porosities and for a fixed incidence
angle of Y = p/6. In the absence of flow, dispersion is hindered
in dense porous media and we expect the effective diffusivity to
be minimum for the largest area fraction of pillars (smallest
porosity). However, when a flow is applied, shear enhances
dispersion by a mechanism similar to classical Taylor dispersion.4

In this case, the effect of pillar density is opposite as arrays with
large area fractions generate more shear and therefore result in
the strongest dispersion. This competition between hindrance to
transport by trapping and enhancement due to shear leads to a
non-monotonic behavior in the dispersivity in weak flows with
respect to porosity as seen in Fig. 9(a). In strong flows, it is
primarily the shear that dictates the dynamics resulting in a
monotonic growth of dispersion with respect to porosity. It is
worth pointing out that dispersion grows monotonically with flow
rate for a given porosity, consistent with the macrotransport
theory of passive Brownian tracers.5

The dependence on incidence angle Y for a given geometry
and flow strength is illustrated in Fig. 9(b). The results suggest
that dispersion is maximum for Y E p/8 and weakest for Y = 0
and p/4. This can be appreciated based on the microscopic
dynamics discussed above. For a fixed flow strength, a dilute
cloud spreads across the lattice most efficiently when the
filament trajectories are chaotic, thus promoting rapid separa-
tion of nearby polymers. Indeed, as shown in Fig. 7, the power
spectrum of the orientation angle has the slowest decay for
Y = p/8, indicative of aperiodic and strongly chaotic dynamics.
Conversely, symmetric flow patterns hinder dispersion due to the
quasi-periodic or periodic trajectories that occur in that case.46

4 Chromatographic separation

Not only do scattering dynamics control long-time dispersion,
but they also dictate the mean transport velocity. We now
discuss how this effect can be leveraged for the use of 2D
micro-patterned porous media as chromatographic devices that
can sort polymers based on their lengths.

As an illustrative example, we consider two filaments of
lengths L/a = 0.7 and L/a = 1.7. Assuming the two polymers have
the same persistence length cp, the shorter filament is effec-
tively experiencing weaker thermal shape fluctuations. In a
typical microfluidic experiment, a macroscopic pressure gradi-
ent drives the flow through the porous medium, which sets the
characteristic shear rate uN/a of the problem. As a result, the
longer polymer has a larger elastoviscous number that scales
as BL4. Fig. 10(a) shows typical COM trajectories of the two
polymers over a given period of time, starting from the same
position highlighted on the figure at t = 0. It is evident from the

Fig. 9 (a) Variation of Dmax with �m at an incidence angle of Y = p/6 for
three different lattice porosities. (b) Variation of Dmax with Y. Error bars are
on the order of the symbol size. Parameter values are as in Fig. 4.
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Lagrangian trajectories that over the course of time the fila-
ments separate out quite efficiently after interacting only with
B6–7 pillars. The shorter polymer (shown in blue) experiences
an elastoviscous number that is below the buckling threshold.24

As a result, it slides past the obstacles and relies on the vaulting
mode discussed in Section 2 to get transported without much
effective hindrance. On the other hand, the longer polymer
(shown in red) frequently gets trapped around the obstacles and
mainly adopts folded conformations due to buckling instabilities.
Such wrapping of the polymer around the obstacles is made
evident by the frequent intersections between the COM trajectory
and the pillars in Fig. 10(a). Ensemble averaged trajectories of the
COM coordinates are plotted as functions of time in Fig. 10(c) and
clearly show the increasing separation of the two polymers
through their interaction with the pillars and the flow.

We quantify the efficiency of this separation process using
the mean separation distance defined as:

hdiðTÞ ¼ 1

T

ðT
0

�x1ðtÞ � �x2ðtÞj jdt: (11)

Fig. 10(d) shows the dependence of hdi(T) on the flow incidence
angle Y for a dimensionless time of T = 8. Consistent with the
results on dispersivity shown in Fig. 9(b), the separation hdi(T)
is maximized for an incidence angle close to Y = p/6, which we
attribute to the chaotic scattering dynamics of the Lagrangian
trajectories. We also find as expected that symmetric flow
patterns at Y = 0 or Y = p/4 also result in poor separation;

see the Supporting Movies (ESI†) for a visual illustration of
these differences.

It is evident that in the process of such a numerical design it
is important for the two polymers under consideration to
exhibit distinct scattering dynamics. In order to appreciate
this, we present a phase chart in Fig. 10(b) showing the
dominant mode of transport as a function of the flow angle
Y and contour length L/a. In order to classify the different
modes of transport in a systematic way, we first studied the
end-to-end distance Ree of the polymers. If Ree remained within
12% of the contour length of the polymer, the mode was
classified as vaulting. Otherwise, when larger deformations
occurred, we then considered the velocity of the center-of-
mass. The trapping mode was identified by detecting the
presence of prolonged plateaus of the velocity near the value
of zero. Note, however, that typically the trapping mode
alternates with events of squeezing or gliding. In order to
distinguish them, we looked at the dominant events during
the interaction of the polymer with one hundred pillars. The
phase chart eludes to the fact that the optimal angle Y for
separation is expected to be different depending on the length
of the polymers that one wants to separate.

5 Concluding remarks

We have analyzed the long-time transport properties of semi-
flexible polymers with L B cp in structured porous media under

Fig. 10 (a) A typical center-of-mass trajectory of two polymers of lengths L/a = 0.7 (blue) and L/a = 1.7 (red) over a given period of time with flow at
Y = p/6. Both polymers started from the marked point at t = 0. The elastoviscous numbers are �m = 120 and 4 � 103 for the shorter and longer filaments
respectively. (b) Phase chart showing the dominant modes of transport as a function of incidence angle Y and contour length L/a. (c) Ensemble averaged
x and y coordinates of the COM of the two polymers for the case shown in (a). (d) Time-averaged separation of the two polymers as a function of
incidence angle. In all the simulations, l = 1.2.
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the action of an imposed flow. In contrast to entropic polymer
molecules, the dynamics in this case is governed by a competi-
tion between dynamic buckling instabilities and interactions
with obstacles, which depend on several geometric factors such
as the incidence angle of the imposed flow, the lattice porosity
and polymer contour length. These complex interactions were
found to result in three dominant modes of transport, coined
trapping, gliding and vaulting. In the spirit of recently studied
bacterial spreading in microfluidic crystals,47 our simulations
revealed how these scattering dynamics and transport in the
non-uniform flow result in long-time diffusive transport.
Following the classical mechanism of Taylor dispersion,45

shear is typically found to enhance dispersion, yet strong flows
also lead to more frequent trapping of polymers around obsta-
cles, a phenomenon unique to deformable particles that tends
to reduce transport.

Leveraging these scattering dynamics, we demonstrated how
an array of microposts can be used to sort polymers according
to their contour length. This chromatographic design bears
similarities with the post arrays often used for the separation of
long- chain polymers,10–12 as well as with deterministic lateral
displacement devices (DLD) that are classically used to sort
biological cells based on their size and deformability.48,49 The
explored parameter space reveals how the angle of the flow can
be optimized for efficient sorting of the filaments. Further
optimization work, however, would be useful, in particular to
identify the role of pillar shape on dispersion and separation.50

All the numerical results presented here relied on a local
anisotropic drag model for the filament dynamics, which
neglects the role of hydrodynamic interactions in the spirit of
previous studies involving DNA molecules.16–18 To assess the
role of intrafilament hydrodynamic interactions, we performed
an additional set of simulations retaining the non-local opera-
tor in the slender-body equation.33,34 Fig. 11 compares the
center of mass trajectories over approximately 30 pillars for
both models, where it is evident that the effect of intrafilament
hydrodynamic interactions is weak. Our model also glosses
over polymer–pillar hydrodynamic interactions, which are more
challenging to capture numerically. André et al.51 showed that
these interactions are not significant during the mechanical
hooking and unhooking of DNA molecules past micro-pillars
during electrophoretic transport, and that local drag models
can provide quantitative results. Including hydrodynamic inter-
actions with pillars would require accounting for lubrication
films that arise during close contacts of the polymers with
pillars, for instance during trapping events. We speculate that
these lubrication films will slow down the approach of the
polymers towards the pillars and also prolong their escape as
tangential motion will incur additional viscous dissipation, and
this may possibly lead to a reduction in the mean velocity and
dispersivity. Nevertheless, we believe that our leading-order
hydrodynamic model still provides useful qualitative insight
in the scattering dynamics and chromatographic separation
process. Future work will carefully address the possible role of
the polymer–pillar hydrodynamic interactions and extend the
present results to non-dilute polymer solutions.
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Appendix: contact algorithm

We outline the algorithm used to prevent penetration of the
filaments into the pillars, which is inspired by the work of
Evans et al.39 The local SBT eqn (6) can be re-arranged as
follows:

@x

@t
þ L

a
L � xssss ¼ �mu� L

a
L � � sxsð Þsþ

ffiffiffiffiffiffiffiffiffiffi
L=‘p

q
n

� �
� F; (12)

where F contains terms due to the background flow, internal
tension, and Brownian forces. For any given point x(s,t) along
the filament, we first identify the cell center xc = (xc, yc) in which
it is located (Fig. 12). Let d denote the Euclidean distance
between x(s,t) and that cell center. Following Evans et al.,39

we introduce the unit vector p̂ defined as:

p̂ ¼ xðs; tÞ � xc

d
: (13)

If d � a o D, where D is a small cut-off distance, we project the
force F parallel and perpendicular to p̂ to define:

Fn = p̂�F, (14)

Ft = (I � p̂p̂)�F, (15)

Fig. 11 Ensemble averaged x and y coordinates of the center of mass as
functions of time, comparing results from the local drag model with a
model including intrafilament hydrodynamic interactions. Parameter
values: L/a = 1, Y = p/4 and �m = 8 � 103.
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where subscripts n and t stand for the normal and tangential
directions, respectively. Keeping Ft unchanged, we alter the
component Fn as follows:39

Fn ¼ min Fn; 1� D
d � a

� �m� �
Fn

� �
; (16)

where we chose m = 4. The above definition is such that if the
fluid, tension and Brownian forces try to separate the filament
from the pillar, then the force component is unaltered.
However, if these same forces are attempting to push the
filament into a pillar, then the sign of the force is reversed.
Since the tangential component is unchanged, this treatment
allows the filament to glide or wrap around the obstacles
without significant numerical difficulties. In the event of over-
lap with a pillar, we adaptively reduce the time step to ensure
numerical stability. In all the simulations shown here, we have
used D = 0.005L.
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