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We consider phoretic self-propulsion of a chemically active colloid where solute is
produced on the colloid surface (with a spatially varying rate) and consumed in the bulk
solution (or vice versa). Assuming first-order kinetics, the dimensionless transport problem
is governed by the surface Damköhler number S and the bulk Damköhler number B.
The dimensionless colloid velocity U , normalized by a self-phoretic scale, is a nonlinear
function of these two parameters. In the limit of small S, the solute flux is effectively
prescribed by the surface activity distribution, resulting in an explicit expression for U that
is proportional to S. In the limit of large B, the deviations of solute concentration from
the equilibrium value are restricted to a narrow layer about the active portion of the colloid
boundary. The associated boundary-layer analysis yields another explicit expression for
U . Both asymptotic predictions are corroborated by an eigenfunction expansion solution
of the exact problem for the cases when all physical parameters are held fixed except for
a varying colloid size (resulting in S ∝ B1/2) or a varying solute diffusivity (resulting in
S ∝ B). The boundary-layer structure breaks down near the transition between the active
and inactive portions of the boundary. The local solution in the transition region partially
resembles the classical Sommerfeld solution of wave diffraction from an edge.

DOI: 10.1103/PhysRevFluids.9.014001

I. INTRODUCTION

The remarkable propulsion exhibited by chemically active particles in liquid solutions, known
as self-diffusiophoresis, has garnered significant attention following experimental breakthroughs
in catalytic swimmers [1]. The fundamental mechanism underpinning phoretic self-propulsion
involves two key components: solute production or consumption at the particle boundary, coupled
with short-range interactions between the solute molecules and that boundary. Golestanian et al. [2]
introduced the first macroscale model to describe self-diffusiophoresis under Stokes flow conditions,
accounting for diffusive solute transport. In that model, chemical reactions at the particle boundary
are represented through a prescribed solute flux distribution, while mechanical interactions with
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solute molecules are captured through a diffusio-osmotic slip velocity—proportional to the tangen-
tial solute gradient at the outer edge of the interaction layer [3]. In the absence of solute advection,
the linearity of the governing equations and boundary conditions implies that an asymmetry in the
particle shape or physicochemical properties is required for self-propulsion: in typical experiments
involving spherical colloids, this asymmetry is achieved by coating half of a particle with a catalyst.

A more sophisticated model of surface reactions involves first-order chemical kinetics [4]. The
associated boundary condition imposes a linear relation between the solute flux and the local excess
concentration, whose characteristic ratio defines the surface Damköhler number (hereafter denoted
by S). For slow reaction rates (S → 0), the imposed flux model is recovered. Accounting for finite
Damköhler number has proven to be essential for capturing the dependence of the propulsion speed
on particle size, as observed in experiments [4].

Of interest to us in this work is the case where the excess solute gets consumed or produced in the
bulk liquid surrounding the particle, for instance as a result of chemical degradation or bulk reaction
with another solute. In that case, the strength of consumption is characterized by a bulk Damköhler
number, hereafter denoted by B, defined as the ratio of the reactive to diffusive consumption rates.
Solute bulk consumption has already been studied using both numerical simulations [5] as well
as weakly nonlinear analyses near the threshold for spontaneous motion [6]. In certain singular
problems (e.g., involving two-dimensional [7–9] or channel [10,11] geometries), even a weak bulk
reaction may have significant effect.

Here, we analyze the steady self-diffusiophoresis of a spherical particle. The paper is organized
as follows. In Sec. II we present the physicochemical problem, constructing the kinetic model
with some care (which is often absent in the prevailing literature on self-diffusiophoresis). The
dimensionless problem is formulated in Sec. III, where we define the two Damköhler numbers.
An exact solution based upon an eigenfunction expansion is derived in Sec. IV. Asymptotic
approximations for both small S and large B are discussed in Sec. V. The boundary-layer analysis
in the latter limit may break down near the junction between the active and inert portions of the
particle boundary. We analyze the structure of this transition region in Sec. VI. Illustrative examples
are presented in Sec. VII. We conclude in Sec. VIII.

II. PHYSICAL PROBLEM

A chemically active spherical particle of radius a∗ is freely suspended in an unbounded liquid
solution. (Hereafter, dimensional quantities are decorated by an asterisk.) The driver for self-
diffusiophoresis is an inhomogeneous chemical reaction at the particle boundary. For simplicity,
we assume that the surface patterning (e.g., a catalyst) is symmetric about an axis passing through
the particle center. Our interest is in the steady-state transport occurring in a particle-fixed reference
system; to that end, we employ the spherical polar coordinates (a∗r, θ,� ), with r = 0 at the particle
center and θ = 0, π being the symmetry axis, see Fig. 1. Given the presumed axial symmetry, the
solute concentration c∗ is a function of r and θ . Our goal is the velocity of that system relative to the
otherwise quiescent liquid. That velocity must be parallel to the symmetry axis, say U ∗ ı̂ (ı̂ being a
unit vector in the direction θ = 0).

Suppose first that a reversible surface reaction generates solute from one or more abundant
species whose concentrations c∗

i may be regarded as constant. We assume that the surface patterning
affects both the forward and backward reaction rates in the same spatial manner, say in proportion to
a (dimensionless) non-negative distribution f (θ ). The forward and backward rates are, respectively,

k∗
+ f (θ )

∏
i

c∗
i , k∗

− f (θ )c∗, (2.1)

wherein k∗
± are the forward and backward rate constants. (In particular, k∗

− has the dimensions of
velocity.) The production/absorption condition at the particle boundary is accordingly

−D∗

a∗
∂c∗

∂r
= k∗

−(c∗
s − c∗) f (θ ) at r = 1, (2.2)
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FIG. 1. Schematic showing the particle geometry and coordinates. The zoomed region (rotated) describes
the transition-region coordinates.

wherein D∗ is the solute diffusivity and

c∗
s = (k∗

+/k∗
−)

∏
i

c∗
i (2.3)

is the equilibrium concentration for the surface reaction. The model (2.2) also describes the
simpler irreversible case where the surface patterning catalyzes a breakdown of the solute with
no replenishment, for which c∗

s = 0.
We model the production or consumption of solute in the bulk in the same way as on the surface,

but without any spatial variation. In other words, the solute is consumed at a volumetric rate provided
by the product of c∗ with a uniform bulk rate constant, say k∗

b (with the dimensions of inverse time),
and may be replenished by a reaction (which need not be the reverse of the consumption reaction)
at a uniform rate which can then be written as k∗

b c∗
b . The constant c∗

b may therefore be interpreted as
an equilibrium concentration—the bulk analog of c∗

s . Overall, then, solute is consumed in the bulk
in proportion to the excess concentration c∗ − c∗

b with a uniform bulk rate constant k∗
b [5,12]:

bulk consumption (per unit volume) = k∗
b (c∗ − c∗

b ). (2.4)

For true chemical degradation, where c∗
b = 0, Eq. (2.4) represents a pure decay of the solute by a

first-order chemical reaction with no replenishment.
At steady state, it follows that c∗ satisfies the diffusion-reaction equation

D∗

a∗2 ∇2c∗ = k∗
b (c∗ − c∗

b ) for r∗ > a∗, (2.5)

in which solute advection has been neglected. Due to axial symmetry, the dimensionless Laplacian
adopts the form

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
. (2.6)

The concentration c∗ is governed by Eq. (2.5), together with condition (2.2) and the requirement of
far-field approach to c∗

b . The concentration c∗ consequently lies between c∗
s and c∗

b . Hence either
c∗

b < c∗ < c∗
s , leading to production on surface and consumption in the bulk, or c∗

s < c∗ < c∗
b ,

leading to production in the bulk and consumption on the surface.
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In describing the hydrodynamic problem we employ a macroscale description, where the short-
range interaction between the solute molecules and the particle is manifested by diffusio-osmotic
slip [3],

slip velocity = −b∗ × surface gradient of solute concentration. (2.7)

We assume that b∗ is uniform. Note that b∗ is a signed quantity, positive for attractive interactions
and negative for repulsive ones [3]. The fluid velocity in the comoving frame is therefore gov-
erned by the continuity and Stokes equations together with condition (2.7) and the requirement
for approaching the uniform velocity −U ∗ ı̂ at large distances. Consistently with the macroscale
description, the particle acquires the rectilinear velocity U ∗ required to keep it force-free.

III. DIMENSIONLESS FORMULATION

Relation (2.2) leads to the definition of the surface Damköhler number

S = k∗
−a∗

D∗ , (3.1)

representing the ratio of reactive to diffusive solute flux densities. Equation (2.5) leads to the
definition of the bulk Damköhler number

B = k∗
b a∗2

D∗ , (3.2)

representing the ratio of reactive to diffusive consumption rates. As will become evident from the
equations below, the dimensionless problem depends only upon these two parameters.

We define the dimensionless concentration c by

c∗ = c∗
b + (c∗

s − c∗
b )c. (3.3)

This nondimensionalization renders 0 < c < 1. For c∗
b < c∗

s , the quantity c represents the excess
concentration relative to the bulk. For c∗

s < c∗
b it measures the concentration deficit relative to the

bulk. The dimensionless fluid velocity is obtained by normalizing the dimensional velocity with

U∗ = b∗(c∗
s − c∗

b )

a∗ . (3.4)

The dimensionless solute transport problem is governed by: (i) the modified Helmholtz equa-
tion [cf. Eq. (2.5)]

∇2c = Bc; (3.5)

(ii) the kinetic condition at the particle boundary [cf. Eq. (2.2)]

∂c

∂r
= −S (1 − c) f (θ ) at r = 1; (3.6)

and (iii) the approach to equilibrium at large distances

c → 0 as r → ∞. (3.7)

Since solutions to the modified Helmholtz equation decay exponentially fast [cf. Eq. (4.2)], there is
no solute flux from infinity. From a conservation point of view, then, the surface and bulk processes
must be opposite at steady state.

The problem specified by Eqs. (3.5)–(3.7) defines c as a function of the governing parameters S
and B, as well as the activity distribution f (θ ). Once solved, we can consider the flow, governed by:
(i) the continuity and Stokes equations; (ii) the diffusio-osmotic slip [cf. Eq. (2.7)]

u = −êθ

∂c

∂θ
at r = 1; (3.8)
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(iii) the far-field approach to a uniform stream (see Fig. 1)

u → −U ı̂ as r → ∞, (3.9)

where U = U ∗/U∗; and (iv) the requirement that the particle is force-free. In fact, the detailed
calculation of the flow field is not required, as use of the reciprocal theorem [13] provides U as the
quadrature

U = −1

2

∫ π

0

∂c

∂θ

∣∣∣∣
r=1

sin2 θ dθ, (3.10)

or, following integration by parts,

U =
∫ π

0
c|r=1 sin θ cos θ dθ. (3.11)

In what follows, it may be convenient to employ μ = cos θ instead of θ . Writing f (θ ) = F (μ),
it is natural to represent F as a series of surface harmonics,

F (μ) =
∞∑

m=0

FmPm(μ), (3.12)

wherein Pm are the Legendre polynomials of degree m. Using the orthogonality of these
polynomials, ∫ 1

−1
Pm(μ)Pn(μ) dμ = 2

2m + 1
δmn, (3.13)

we obtain

Fm = 2m + 1

2

∫ 1

−1
F (μ)Pm(μ) dμ. (3.14)

When using μ, Eq. (3.11) simplifies to

U =
∫ 1

−1
μc|r=1 dμ, (3.15)

where, with a slight abuse of notation, c is regarded as a function of r and μ.

IV. EXACT SOLUTION

Using the eigenfunctions of the modified Helmholtz equation, we find that the most general
axisymmetric solution of Eqs. (3.5)–(3.7) is

c =
∞∑

n=0

Anφn(r)Pn(cos θ ), (4.1)

where

φn(r) = r−1/2Kn+1/2(B1/2r), (4.2)

in which Kν is the modified Bessel function of the second kind with degree ν. Substitution of
Eqs. (3.12) and (4.1) into condition (3.6) yields

∞∑
n=0

Anφ
′
n(1)Pn(μ) = −S

[
1 −

∞∑
n=0

Anφn(1)Pn(μ)

] ∞∑
m=0

FmPm(μ), (4.3)

where the prime denotes differentiation with respect to the argument. Projection of Eq. (4.3) upon
Pn(μ) (n = 0, 1, 2, . . .) yields an infinite linear system governing the coefficients {An}∞n=0. Using
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controlled truncation, this system may be solved in principle for any values of B and S and a given
activity distribution f (θ ). Once solved, substitution into Eq. (3.15) yields, upon making use of the
orthogonality relations (3.13)

U = 2
3 A1φ1(1). (4.4)

Prior to illustrating the exact solution for a specific activity distribution, it is desirable to
supplement it by asymptotic approximations.

V. ASYMPTOTIC APPROXIMATIONS

A. Linked Damköhler numbers

Considering the manner by which the Damköhler numbers (3.1)–(3.2) depend upon the dimen-
sional quantities in the problem, there are two natural scenarios where these two numbers are linked.
When the particle size a∗ is allowed to vary while all other dimensional quantities are fixed, the
linkage

S = αB1/2 (5.1)

emerges, where α = k∗
−/(D∗k∗

b )1/2 is fixed. When instead the diffusivity D∗ is varied, the linkage

S = βB (5.2)

is obtained, where β = k∗
−/(a∗k∗

b ) is fixed.
We will next consider asymptotic limits where S is small or B is large. The linkages above

suggest that, in these limits, B is small and S is large, respectively. However, depending on the
values of α or β, in practice S could have a small numerical value at the same time as B has a large
one. Hence, in the analysis for small S we do not make any assumption from the outset on the size
of B, and vice versa.

B. Small surface Damköhler number

For small Damköhler surface number S � 1, it is evident from Eq. (3.6) that c is of order S . It
then follows that the surface solute flux becomes directly prescribed by f (θ ), independent of the
concentration. We therefore find from Eq. (4.3)

An ≈ −Sφn(1)

φ′
n(1)

Fn. (5.3)

The particle velocity is then obtained from Eq. (4.4):

U ≈ −2Sφ1(1)

3φ′
1(1)

F1, (5.4)

or, upon using Eq. (4.2),

U ≈ 2S (1 + B1/2)

3(2 + 2B1/2 + B)
F1. (5.5)

We note that the asymptotic error in Eq. (5.5) is O(S2). It follows that for B = O(S )—which
includes both linkages (5.1) and (5.2)—approximation (5.5) is asymptotically equivalent to

U ≈ SF1

3
, (5.6)
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with an O(S2) asymptotic error. We have therefore retrieved the well-known result [2] in the absence
of bulk reaction. For large B, on the other hand,

U ≈ 2SF1

3B1/2
. (5.7)

C. Large bulk Damköhler number

In the limit of large bulk Damköhler number, B 
 1, we find from Eqs. (3.5) and (3.7) that

c ≡ 0. (5.8)

Since this is an exact solution of both Eqs. (3.5) and (3.7), it is evident the asymptotic error is
exponentially small.

The trivial solution (5.8) is clearly incompatible with condition (3.6). Seeking an additional
distinguished limit at large B, we observe from Eq. (3.5) a dominant balance with spatial variations
across a narrow region of ord(B−1/2) width. We therefore postulate a boundary layer of that width
about the particle boundary r = 1. Defining the stretched coordinate

Y = B1/2(r − 1), (5.9)

we write in the boundary layer

c(r, θ ;B) = c̃(Y, θ ;B). (5.10)

Substitution of Eqs. (5.9)–(5.10) into the diffusion-reaction equation (3.5) yields

∂2c̃

∂Y 2
≈ c̃ for Y > 0. (5.11)

Condition (3.6) becomes

B1/2 ∂ c̃

∂Y
= −S (1 − c̃) f (θ ) at Y = 0, (5.12)

and the requirement of matching with the “outer” solution (5.8) implies the far-field decay

lim
Y →∞

c̃ = 0. (5.13)

The solution of Eqs. (5.11)–(5.13) is simply

c̃(Y, θ ) ≈ S f (θ )

S f (θ ) + B1/2
e−Y . (5.14)

Substitution into Eq. (3.11) then provides the particle velocity

U ≈
∫ π

0

S f (θ )

S f (θ ) + B1/2
sin θ cos θ dθ. (5.15)

Up to this point, the analysis has been carried out with no restrictions on S . We note using Eq. (3.14)
that for S � 1 quadrature (5.15) readily reproduces Eq. (5.7). More generally, it is evident from
Eq. (5.15) that the linkage (5.1) constitutes a distinguished limit at large B, whereby

U ≈
∫
A

α f (θ )

1 + α f (θ )
sin θ cos θ dθ. (5.16)

For the case

S 
 B1/2, (5.17)

which includes (but is not restricted to) linkage (5.2), the fraction in the integrand of Eq. (5.15)
somewhat surprisingly reduces to a discontinuous function: 1 where f > 0 and 0 where f = 0. We
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therefore obtain

U ≈
∫
A

sin θ cos θ dθ, (5.18)

wherein

A = {θ ∈ (0, π )| f (θ ) > 0} (5.19)

is the active portion of the boundary (see Fig. 1). Remarkably, the particle velocity depends only
upon the extent of the active portion of the boundary; in particular, it is insensitive to the details
of the activity profile. In what follows, it is convenient to restrict the analysis to the case (see
Fig. 1) where A = (0, θ∗) with 0 < θ∗ < π [cf. Eqs. (7.1) and (7.4)]. Under this modest restriction,
Eq. (5.18) gives

U = sin2 θ∗

2
. (5.20)

VI. TRANSITION REGION

The asymptotic solution in the limit B 
 1 with S 
 B1/2 may appear to introduce a con-
tradiction. Indeed, the nonzero velocity (5.20), which may be traced back to Eq. (3.11), seems
incompatible with the zero velocity predicted by a naive substitution into the original quadrature
(3.10) of the limiting concentration [cf. Eq. (5.14)]:

c̃(Y, θ ) =
{

e−Y for 0 < θ < θ∗,
0 for θ∗ < θ < π.

(6.1)

The origin of this incompatibility has to do with the edge θ = θ∗ of A. With a finite discontinuity
of c̃ there, expression (3.10) cannot be applied in a piecewise manner. The resolution of this apparent
contradiction has to do with a breakdown of the boundary-layer structure. The boundary-layer
solution, where variations with respect to θ are assumed “slow,” is clearly incompatible with a
finite discontinuity.

We therefore consider a transition region about the edge (r = 1 and θ = θ∗) of A. In that region,
the excess concentration smoothly varies between the two branches of Eq. (6.1). With the presence
of such a region, the original quadrature (3.10) is dominated by a small neighborhood N of θ∗,
which is still asymptotically larger than the width of the transition region. Since θ is approximately
constant in that neighborhood, we obtain from Eq. (3.10)

U = − sin2 θ∗

2

∫
N

∂c

∂θ

∣∣∣∣
r=1

dθ. (6.2)

Recalling the need to match the unity value for θ < θ∗ and the zero value for θ > θ∗, we retrieve
Eq. (5.20).

The boundary-layer scaling suggests that the lateral extent of the transition region is B−1/2.
Defining the local coordinate [cf. Eq. (5.9)]

X = B1/2(θ∗ − θ ), (6.3)

and considering the limit B → ∞ with X,Y fixed, we find that the transition region coincides with
the upper half XY plane (see Fig. 1). Defining C(X,Y ) = c(r, θ ), C is governed by the modified
Helmholtz equation

∂2C

∂X 2
+ ∂2C

∂Y 2
= C for Y > 0. (6.4)
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At large Y it must satisfy

lim
Y →∞

C = 0, (6.5)

representing asymptotic matching with Eq. (5.8).
It remains to specify the mixed boundary conditions at Y = 0. Using definition (6.3), the exact

condition (5.12) reads

∂C

∂Y
= −SB−1/2(1 − C) f (θ∗ − B−1/2X ) at Y = 0. (6.6)

In the inert portion of the boundary, where f = 0, we find

∂C

∂Y
= 0 for X < 0. (6.7)

The condition on the active portion depends upon the asymptotic behavior of f (θ ) as θ ↗ θ∗. To
that end we consider two representative cases.

In the case where f (θ ) attains a nonzero limit [cf. Eq. (7.1)] as θ ↗ θ∗ we simply find from
Eq. (5.17)

C = 1 for X > 0. (6.8)

The resulting problem is reminiscent of the diffraction of plane waves of sound by the edge of
a semi-infinite screen—a problem originally solved by Sommerfeld [14]. Defining the local polar
coordinates (ρ, ϑ ) by

X = ρ cos ϑ, Y = ρ sin ϑ (6.9)

(see Fig. 1), the solution of Eqs. (6.4)–(6.5) and Eqs. (6.7)–(6.8), derived in the Appendix, is

C = e−Y

2

{
1 + erf

[
ρ1/2

(
cos

ϑ

2
− sin

ϑ

2

)]}
+ eY

2

{
1 − erf

[
ρ1/2

(
cos

ϑ

2
+ sin

ϑ

2

)]}
. (6.10)

In terms of the polar coordinates (6.9), the limit X → ∞ with Y fixed corresponds to ρ → ∞ with
ϑ = O(1/ρ). We then readily obtain

lim
X→∞

C = e−Y , (6.11)

which trivially matches the top branch of the boundary-layer solution (6.1). The limit X → −∞
with Y fixed corresponds to ρ → ∞ with π − ϑ = O(1/ρ). Here, we obtain

lim
X→−∞

C = 0, (6.12)

which trivially matches the lower branch of the boundary-layer solution (6.1).
In the case where f (θ ) ∼ K (θ∗ − θ ) as θ ↗ θ∗ [cf. Eq. (7.4), where K = 1], condition (6.6)

becomes

∂C

∂Y
= −KSB−1(1 − C)X for X > 0. (6.13)

Here, it is evident that Eq. (5.2) is a distinguished limit, giving the condition

∂C

∂Y
= −βK (1 − C)X for X > 0. (6.14)

We did not attempt to address the resulting mixed boundary-value problem.
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10-2 100 102
0
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0.4

FIG. 2. U versus S using linkage-by-size (5.1) for the Janus profile (7.1). Solid: exact result (4.4) for the
indicated values of α. Dashed: small-S approximation (5.6) and large-B approximation (7.3).

VII. ILLUSTRATIONS

We continue by illustrating our results, considering first the case of linkage by size. With B
locked to S via Eq. (5.1), U becomes a function of S , α and the activity profile. We use a Janus
configuration, namely,

f (θ ) =
{

1, 0 < θ < π/2,

0, π/2 < θ < π,
(7.1)

for which Eq. (3.14) gives

F2k = δk,0

2
, F2k+1 = (−)k (2k)!(4k + 3)

22k+2(k!)2(k + 1)
, (7.2)

and, in particular, F1 = 3/4. The velocity calculated using Eq. (4.4) is shown in Fig. 2 for α = 1/2,
1, and 2. We also portray the α-independent small Damköhler-number approximation (5.6), which
here gives U ≈ S/4 for S � 1. With Eq. (7.1), the large Damköhler-number approximation (5.16)
gives

lim
S→∞

U = α

2(1 + α)
. (7.3)

For the aforementioned α values, Eq. (7.3) implies the respective limits 1/6, 1/4, and 1/3. The
approach at large S to these limits is evident in the figure.

Consider now linkage by diffusivity. With B locked to S via Eq. (5.2), U becomes a function of
S , β and the activity profile. We here use a single linkage value, β = 1, but consider both the Janus
activity distribution (7.1) and the generalized Janus profile

f (θ ) =
{

cos θ, 0 < θ < π/2,

0, π/2 < θ < π,
(7.4)

for which

F2k = (−)k+1(2k)!(4k + 1)

4k+1(k!)2(k + 1)(2k − 1)
, F2k+1 = δk0

2
, (7.5)

and, in particular, F1 = 1/2. For that profile the small Damköhler-number approximation (5.6) gives
U ≈ S/6. Since A = (0, π/2) for both Eqs. (7.1) and (7.4), these distributions share the same large
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10-2 100 102 104
0

0.1

0.2

0.3

0.4

0.5

Janus

generalized Janus

FIG. 3. U versus S using linkage-by-diffusivity (5.2) with β = 1 for both the Janus (7.1) and the gener-
alized Janus (7.4) activity profiles. Solid: exact result (4.4). Dashed: small Damköhler-number approximation
(5.6).

Damköhler-number limit (5.20), namely,

lim
S→∞

U = 1
2 . (7.6)

The results are illustrated in Fig. 3.
In calculating U using Eq. (4.4), we have encountered difficulties when applying the numerical

scheme at large values of S . These are more pronounced for the Janus profile (7.1), where the interfa-
cial activity undergoes a finite discontinuity at θ = π/2. Apparently, the associated nonsmoothness
escalates the Gibbs phenomenon. In any event, the approach to the limit (7.6) is unequivocal.

VIII. CONCLUDING REMARKS

We have analyzed self-diffusiophoresis of active colloids with solute being transported by
diffusion from the colloid boundary, where it is produced (or consumed) axisymmetrically, to the
bulk, where it is consumed (or produced) isotropically. The dimensionless problem is governed by
the two associated surface and bulk Damköhler numbers, S and B.

We have solved the problem using an eigenfunction expansion. This semianalytic solution,
applicable for all values of S and B, has been accompanied by asymptotic approximations. For
small S , the solute flux on the surface is effectively prescribed by the activity distribution f (θ ); the
resulting particle velocity is proportional to S , with a coefficient that can be expressed explicitly
as a function of B and f , see Eq. (5.5). For large B, the solute concentration is uniform except
within a boundary layer about the active portion of the boundary, and the particle velocity can be
expressed explicitly as an integral of a function of S , B and f , see Eq. (5.15). The linkage S ∝ B1/2

of a variable particle size constitutes a distinguished limit for that scenario. For S 
 B1/2 (which
includes the linkage S ∝ B of a variable solute diffusivity) we find that the particle velocity depends
upon the relative fraction of the active boundary, but is otherwise indifferent to the activity details
in that fraction. The associated boundary-layer solution breaks down near the edge of the active
portion of the boundary. Following a similar analysis in a classical wave problem [14], we have
obtained a closed-form solution of the local transport problem in the edge region.

We have neglected solute advection [15,16] in the present analysis. When accounting for advec-
tion, the conservation equation (3.5) generalizes to

∇2c − Pe u · ∇c = Bc, (8.1)
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wherein Pe = a∗U∗/D∗ is the Péclet number. Generally speaking, then, the neglect of advection is
justified if this number is small. Making use of Eq. (3.4) we see that

Pe = b∗(c∗
s − c∗

b )

D∗ . (8.2)

(Note that this intrinsic Péclet number, which is independent of particle size, differs from the
standard one in the literature, which is based upon a typically over-simplified kinetic description.)
It is interesting to note that the present large-B boundary-layer solution is likely valid even at large
Pe as long as Pe � B. The reason is that, with the boundary-layer thickness being B−1/2, the first
(diffusive) term on the left-hand side of Eq. (8.1) is of order B while the second (advective) term
on the left-hand side of Eq. (8.1) is of order Pe. [Note that the velocity (5.15) is O(1).] The ratio of
advection to diffusion is therefore of order Pe/B.

To summarize, we recapitulate our results in terms of dimensional quantities. For weak interfacial
activity, the particle velocity is proportional to b∗k∗

−(c∗
s − c∗

b )/D∗. In the limit of strong bulk activity,
the solute concentration differs from c∗

b in a narrow boundary layer of thickness (D∗/k∗
b )1/2. The

resulting particle velocity scales as b∗(c∗
s − c∗

b )/a∗. Here, there are two situations. If the limit
is realized by large values of a∗, the ratio of the particle velocity to b∗(c∗

s − c∗
b )/a∗ depends

(nonlinearly) upon both the ratio α = k∗
−/(D∗k∗

b )1/2 and the activity profile. If the limit is realized by
small values of D∗, the ratio of the particle velocity to b∗(c∗

s − c∗
b )/a∗ is independent of the reaction

coefficients, the solute diffusivity, and even the details of the reaction profile.
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APPENDIX: TRANSITION REGION

Following Lamb [17], we seek a solution of Eq. (6.4) of the form

C = e−Y G + eY H. (A1)

Requiring the functions G and H to satisfy

∂2G

∂X 2
+ ∂2G

∂Y 2
= 2

∂G

∂Y
,

∂2H

∂X 2
+ ∂2H

∂Y 2
= −2

∂H

∂Y
, (A2)

Eq. (6.4) is trivially satisfied. To solve equations (A2), we employ the parabolic coordinates (see
Fig. 1)

ξ = ρ1/2 cos
ϑ

2
, η = ρ1/2 sin

ϑ

2
. (A3)

These are natural for the transition-region geometry and conditions (6.7)–(6.8), since the negative
real axis becomes ξ = 0, while the positive real axis becomes η = 0. With ξ and η as independent
variables, Eq. (A2) become

∂2G

∂ξ 2
+ ∂2G

∂η2
= 4

(
η
∂G

∂ξ
+ ξ

∂G

∂η

)
,

∂2H

∂ξ 2
+ ∂2H

∂η2
= −4

(
η
∂H

∂ξ
+ ξ

∂H

∂η

)
. (A4a, b)

The solution to Eq. (A4a) can be written as a combination of two similarity solutions

G = G+(ζ+) + G−(ζ−), (A5)

wherein ζ± = ξ ± η. We therefore obtain the ordinary differential equations

G′′
+ = 2ζ+G′

+, G′′
− = −2ζ−G′

−, (A6)
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which integrate to give G′
± = g±e±ζ 2

± . Similarly, the solution to Eq. (A4b) is written as a combina-
tion of two similarity solutions

H = H+(ζ+) + H−(ζ−). (A7)

The resulting equations

H ′′
+ = −2ζ+H ′

+, H ′′
− = 2ζ−H ′

− (A8)

integrate to give H ′
± = h±e∓ζ 2

± .
Now, as ρ → ∞, it is evident that ζ+ → ∞ for all 0 < ϑ < π while ζ− tends to ∞ for 0 < ϑ <

π/2 and to −∞ for π/2 < ϑ < π . To avoid a superexponential divergence of C at large ρ, which
would clearly contradict Eq. (6.5), we must set g+ = h− = 0. We conclude that the most general
solutions of Eq. (A4) are

G(ξ, η) = g̀ + g erf(ξ − η), H (ξ, η) = h̀ + h erf(ξ + η). (A9)

The four constants appearing in Eq. (A9) are determined from the boundary conditions. With
condition (6.7) applying at ξ = 0 we readily obtain h̀ = g̀ and h = −g. Thus, Eqs. (A1) and (A9)
give

C = e−Y [g̀ + gerf(ξ − η)] + eY [g̀ − gerf(ξ + η)]. (A10)

Recalling that erfz ∼ 1 − e−z2
/z

√
π for z → ∞, we must impose g̀ = g to satisfy condition (6.5).

Last, noting that the inhomogeneous condition (6.8) applies at η = 0, we readily obtain g = 1/2.
We conclude that

C = e−Y

2
[1 + erf (ξ − η)] + eY

2
[1 − erf (ξ + η)]. (A11)

Substitution of Eq. (A3) yields Eq. (6.10).
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