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The interfacial stability of an active viscous film is analyzed theoretically. The film, which rests on a flat substrate
and is bounded from above by an air-liquid interface, contains a suspension of active particles such as swimming
microorganisms that self-propel, diffuse, and exert active stresses on the suspending Newtonian medium. Using
a continuum model for the configuration of the suspension coupled to the forced Stokes equations for the fluid
motion, we analyze the growth of linearized normal mode fluctuations with respect to the quiescent base state.
In the absence of gravity, puller suspensions are found to be always stable, whereas films containing pushers can
become unstable above a critical activity level where active stresses overcome the damping effects of viscosity
and surface tension and drive interfacial deformations. Confinement, diffusion and capillary forces all act to
stabilize the system, and we characterize the transition to instability in terms of the dimensionless parameters
of the problem. We also address the case of inverted films subject to the Rayleigh-Taylor instability, where we
demonstrate that active stresses generated by pullers have the ability to stabilize gravitationally unstable films
by counteracting the effect of the gravitational body force.

Earnestly strains bloom
hastes the whisperer fluid
swash reverberates

1. Introduction

The interaction of active particles with boundaries results in unusual
properties that hinge on their ability to self-propel in a noisy environ-
ment while inducing local fluid flows. In dilute systems, microswimmers
are known to accumulate at walls [1-4] where they display complex tra-
jectories [5,6], swim against external flows [7,8], glide around curved
pillars [9], and can show net rectified motion [10,11]. In semi-dilute
and concentrated suspensions of pushers, instabilities can be triggered
by active stresses resulting from microswimmer disturbances [12-14],
with the appearance of coherent structures and the generation of large-
scale flows that are chaotic in bulk systems [15] but interact with bound-
aries in non-trivial ways [16]. Under confinement, these instabilities can
lead to spontaneous pumping motions, such as the formation of steady
counter-rotating vortices in circular domains [17-19] and the emer-
gence of unidirectional pumping states in periodic channels [19-21],
a phenomenon that can be explained based on an apparent reduction
in the system’s viscosity due to activity [22-24]. The control and reg-
ulation of these internally-driven flows, while still in its infancy, could
be of great use for the design of microfluidic pumps and flow actuation
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devices that rely on active suspensions for the conversion of chemical
energy into motion [25] without the need for externally actuated mov-
ing parts.

In many biological systems, active materials also come in contact
and exchange momentum with soft boundaries. Examples include the
spreading of bacterial swarms [26], cell migration during the forma-
tion of cancer metastasis [27,28], embryogenesis [29] and wound heal-
ing processes [30-33]. In these examples, boundary deformations as
a result of active stresses couple back to fluid flows and internal mi-
crostructural dynamics, leading in some cases to instabilities and self-
organization. Reconstituted systems inspired by cellular dynamics have
also been of interest. In one example, Sanchez et al. [34] observed
the spontaneous motion of active drops containing a solution of exten-
sile microtubules networks. In a related system, Keber et al. [35] con-
sidered active nematics encapsulated inside deformable lipid vesicles,
where complex unsteady deformations were reported. These obser-
vations have spurred various numerical [36,37] and theoretical [38-
41] models for the dynamics of active nematic droplets, either in bulk
or on surfaces, where active stresses can result in propulsion, spon-
taneous division or enhanced spreading. The dynamics of active ne-
matic films and their possible instabilities have also been explored in
a few models [42-44]. Our fundamental understanding of the interac-
tion between active suspensions and soft boundaries remains, however,
limited.
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In this work, we focus on analyzing the forces exerted by a suspen-
sion of self-propelled particles on a deformable free surface and their
role in driving or stabilizing interfacial instabilities. More specifically,
we consider a planar liquid film sitting on a flat substrate and bounded
from above by a fluid interface. The film contains a suspension of self-
propelled particles, such as swimming microorganisms, which exert ac-
tive stresses inside the liquid layer as they propel. We use a continuum
kinetic theory developed in our previous work [19] to model the config-
uration of the suspension and its coupling to the mean-field flow, cap-
tured by the Stokes equations forced by an active stress tensor. These
stresses can generate fluid motions that in turn affect swimmer orien-
tations and can drive the interface out of equilibrium. While our previ-
ous work [19] considered instabilities and spontaneous flows in systems
confined by rigid boundaries, our focus here is on the coupling of ac-
tivity with the dynamics of the deformable interface. A linear stability
analysis is performed to elucidate the roles of active stresses, viscous
damping and capillary forces on the system’s stability. As we demon-
strate, activity in suspensions of pushers tends to drive interfacial defor-
mations and instabilities, whereas puller suspensions have a stabilizing
effect that can in fact help suppress existing instabilities such as the
Rayleigh-Taylor instability of an inverted film. Details of the model and
governing equations are presented in Section 2, along with their non-
dimensionalization in Section 3. The linear stability analysis is set up in
Section 4 and results are discussed in Section 5.

2. Theoretical model

We analyze the stability of a thin liquid film of an active suspen-
sion resting over an infinite planar rigid wall, as depicted in Fig. 1. The
suspending fluid is incompressible and Newtonian, with density p and
dynamic viscosity u. The film is bounded from above by a deformable
air-liquid interface with constant surface tension I', and is subject to a
gravitational field with potential ¢4 = —pgz. We denote by h, the mean
film thickness, and by z = h(x, y,t) the liquid height at position (x, y)
as the interface deforms. For simplicity, we restrict our analysis to two-
dimensional deformations for which h=h(x, t), and we do not expect
the physics to change qualitatively in the more general case. With this
parametrization, the unit normal and tangent vectors on the interface
are expressed as
o (=0,h,0,1) ‘- (1,0,0,.h) W

VI+@.h2 VIt @02
while the interface curvature is given by
o h

—_— 2
[1+ (0.h)711/2
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The model for the active suspension extends past formulations for
bulk and confined microswimmer suspensions [14,19,45], and assumes
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Fig. 1. Problem definition: a three-dimensional liquid film of height h(x, t) con-
taining a suspension of microswimmers rests on a flat substrate.
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a dilute collection of self-propelled particles with constant swimming
velocity V,, oriented along a unit director p. In addition to swimming,
the particles are also subject to Brownian motion, with constant trans-
lational and rotational diffusivities d, and d,, respectively. The parti-
cles are assumed to be neutrally buoyant; as they swim, they exert ac-
tive dipolar stresses on the suspending medium, with constant stresslet
strength o, [24,46]. The coefficient ¢, is signed and depends on the de-
tails of the swimming mechanism,; in particular, we distinguish between
so-called pushers (¢ < 0), pullers (¢, > 0) and movers (o, = 0).

The spatial and orientational configuration of the suspension can be
described by defining the probability density function y(x, p, t) of find-
ing a particle at position x, with orientation p at time t. For convenience,
we also define its orientational moments over the unit sphere of orien-
tations Q:

X, 1) = /Q w(x,p. 1) dp, 3)
m(x,t) = / w(x,p,1)pdp, 4
Q
1
D(x, 1) = /ﬂ w(x,p,z>(pp—§)dp, )

where c is the concentration field, while m and D are the unnormalized
polarization and nematic tensor fields. Following a standard approach
[45], governing equations for these moments can be obtained from the
Smoluchowski equation for the probability density function, yielding
the coupled set of governing equations

dc=-V-F, Q)
3
a,m=—V~Fm+(§/;E—w)-m—zd,m, )
oD =-V-Fy+@D-W-W-D)—6d,D
+/J[§cE+%(E~D+D~E)—%(D:E)I, ®)

where F_, F,, and F;, denote, respectively, the zeroth, first, and second
moments of the translational particle flux:

F, = Vym+vc —d, Ve, )
1
F, = VO(D+ 3c1)+vm—d,Vm, (10)
1
Fp, =V0<(ppp)— 3mI)+vD—d,VD. 11

Here v is the fluid velocity, E = (Vv + Vvl)/2 and W = (Vv — VvT)/2
are the rate-of-strain and vorticity tensors, respectively, and g is the
so-called Bretherton constant [47], which characterizes swimmer shape
and is close to 1 for slender particles such as bacteria. The nematic flux
F}, involves the third orientational moment (ppp), for which a closure
approximation is needed. Here, we use a common linear closure in terms
of the polarization [45]:

(pip;pi) = %[m,.(sjk+mj5,.k+mk5,.j], (12)
which is a good approximation for orientational distributions that are
close to isotropy.

The boundary condition on the particles prescribes no translational
flux. As the air-liquid interface is a material surface that moves with the
fluid velocity v, we prescribe the no-flux condition on the relative veloc-
ity between the interface and the swimmers, leading to the conditions:

n-F.-ve)=0 at z=0, h(x,1), (13)
n-(F,-vm)=0 at z=0, h(x,1), (14)
n-Fp-vD)=0 at z=0, h(x,1), (15)

which express the balance of self-propulsion and translational diffusion
at the boundaries.
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Assuming overdamped dynamics, the fluid velocity field v(x, z, t)
induced by the swimmers satisfies the Stokes equations forced by the
active stress contribution ¢,V -D [24]:

V.v=0, (16)

—Vp+ uVi+ V¢t + 6,V -D = 0. a7

We assume that the velocity satisfies the no-slip condition at the bottom
wall z = 0. At the free surface, the dynamic boundary condition balances
viscous, active and capillary forces:

—(T+0oD)-n=Tkn at z=h(x,0), (18)

where T = —pl + u(Vv + Vv7) is the Newtonian stress tensor in the lig-
uid, and «(x, t) is the local curvature defined in Eq. (2). We also specify
a kinematic boundary condition:

oh+udh=w at z=h(x1), (19)

which states that the interface moves as a material surface.

3. Non-dimensionalization

We proceed to non-dimensionalize both the governing equations and
boundary conditions. We scale all the variables using time scale d-!,
length scale hy, velocity scale hyd, and pressure scale ud,. The probabil-
ity distribution function y is also scaled by the mean number density n.

This approach yields five dimensionless groups:
h h
ot o _ P8 0 Ca,, = [ogln 0.

Ao G
ud, T d,hy - ’

2
0

" oud,’

(20)

The activity parameter « is a dimensionless dipole strength and
compares active stresses to the dissipative effects of viscosity and ro-
tational diffusion. The gravitational number G represents the ratio of
gravitational forces to viscous forces. The active capillary number Ca,,
represents the ratio of active forces to capillary forces. The Péclet num-
ber Pe, which quantifies the level of confinement, compares the per-
sistence length of the swimmers to the film thickness. Finally, A is a
swimmer-specific parameter that compares Brownian diffusion to self-
propulsion. For convenience, we also define a viscous capillary number
Ca,;s = Cag,/lal = pd, hy /T, which quantifies the ratio of viscous forces
to capillary forces and will be useful later on when comparing our pre-
dictions with classic results for passive viscous films.

Upon scaling, the governing Eqs. (6)—(8) for the moments become

dc=-V- [Pem+vc—/\P62VC], 20

om=—V- [Pe(n ¥ %CI) +vm— APe2Vm] + (%ﬁE - W) ‘m—2m,
(22)

oD=-V- [Pe((ppp) - %ml) +vD - APeZVD]

n ﬂ[§CE+ %[E.D+D.EJ— %(D : E)I] +(D-W—W.D)—6D.
(23)

The dimensionless Stokes equations read
duu+ 0w =0, (24)
—0.p + [0%u+ d2ul + a[0, Dy, +0,D,.1 =0, 25)
—0,p + [0*w+0*w] + a[0, D, + 9. D1 - G =0. (26)

The kinematic boundary condition of Eq. (19) remains unchanged.
The dynamic boundary condition of Eq. (18), after projection along
the tangential and normal directions, yields the two conditions at z =
h(x,1):

[D,, + 0,u+d,w|(1 - (axh)z) + [a(D,, — D) +40,w]d,h =0, (27)
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and

—pl1 + (0?1 = 20, h[0,u + Oyw + a D,
+(0ch)2[20,u + aD,, | +20,w+ aD,, = |a|Ca k. (28)
4. Linear stability analysis

We use a temporal linear stability analysis to explore the role of ac-
tive stresses in driving or suppressing interfacial instabilities. The base
state for the analysis is characterized by the absence of flow and a flat in-
terface; it is calculated analytically in Appendix A. We perturb the shape
of the interface as a normal mode of the form s = 1 + ehe!X**+5" with
e <1, where K = kh, and S = s/d, are the dimensionless wavenum-
ber and growth rate, respectively. Accordingly, we also perturb the
probability distribution function (and hence the orientational moments)
as well as the flow variables in the same way: y = y¥ + e (z)e! K¥+57,
v = e¥(2)el K3+t p = p0 4 ep(z)e!K¥+5! where base state variables are de-
noted with superscript 0. Following a standard method, we linearize the
moment equations retaining terms of order ¢, and obtain a set of coupled
linear ordinary differential equations in z relating the unknown eigen-
modes. We omit the full linearized system for brevity. Combined with
the linearized kinematic boundary condition Sh = at z = 1, these dif-
ferential equations, after discretization by a finite volume scheme, can
be recast in the form

Sr=M, -q, (29

where the matrix M; is defined from the governing equations and
boundary conditions, and r and q are both vectors of variables that are
discretized in space:

r = [é,hg, My, Doy, Dy, D, BT, (30)

q = [,y Dy, Doy, Doy byt ] 3D

Note that the off-diagonal components Iﬁxy and ﬁyz of the nematic order
tensor are in general non-zero, but only appear in the problem as non-
linear contributions. D,, is also non-zero but is easily obtained from D,
and D,, using the trace-free property of D.

In order to transform Eq. (29) into an eigenvalue problem, we express
both 4 and & in terms of the orientational moments. From the continuity
Eq. (24), we first note that

a=-L d_w (32)
K dz
Inserting this relation into the x momentum Eq. (25) yields an expression

for the pressure:

(33)

Egs. (32) and (33) can be substituted into the z momentum Eq. (26) to
provide a fourth-order non-homogeneous ODE for the vertical velocity
 in terms of the nematic tensor components only:

40 24 dD db d*D .
Lo _Hg2 @0 | gty = gK?2 [—“— ”‘]+ia1< y X2 1igK3D

dz

xXz*

dz* dz? dz 72

(34
The no-slip condition at the bottom wall translates into:

d

— =0 at z=0.
dz

W=

(35
At the free surface z = 1, the tangential and normal boundary conditions
read

d*w

2 (36)

+ K% =iaKD,, + aK*(D° - D°)h,
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and

_dw
dz3

did A n . _dD
+3KZE =ak*(D,,—D,,) —iak -

X
z

2 —(GK*+|alCay K*)h,
Gn

respectively. After discretization, Egs. (32) and (34), along with bound-
ary conditions (35)-(37), provide a system of algebraic equations
for the velocity components in terms of the nematic tensor. After
combining these equations with Eq. (29), we obtain an eigenvalue
problem of the form Sr =M, -r, where r was previously defined in
Eq. (30) and M, is a matrix of dimensions (6N, + 1) X (6N, + 1), where
N, is the number of points used for the discretization of the do-
main in the vertical direction. This eigenvalue problem is then solved
numerically.

5. Results and discussion
5.1. One-dimensional perturbations

We first analyze the stability to one-dimensional perturbations for
which K = 0, where we explore the possibility of active stresses driving
unidirectional flows within the film. In this limit, the instability is not of
interfacial type, the air-liquid interface remains flat, and the variables
depend on z only. In this special case, the dynamic boundary condition
simplifies to a simple balance between active and viscous stresses. In
the base state, presented in Appendix A, there is no flow and particles
accumulate at the boundaries as a consequence of the interplay of self-
propulsion and diffusion. This accumulation is accompanied by a net
wall-normal polarization profile that is antisymmetric with respect to
the mid-plane, with particles pointing on average towards the boundary
closest to them [4].

Inspection of the linearized equations reveals that unstable eigen-
modes only involve the horizontal velocity &, streamwise polarization
i, and component D, of the nematic order tensor; other variables do
not appear at linear order. Continuity requires that the vertical velocity
 vanishes, thus we follow a different procedure to that introduced in
Section 4. Instead, we construct, in a similar way, an eigenvalue prob-
lem involving the linearized moment equations for m, and D,,, where
we make use of the horizontal Stokes momentum equation. We solve the
problem numerically. Above a certain level of activity, suspensions of
pushers (a < 0) develop instabilities with a sequence of unstable modes
of increasing complexity. These instabilities are reminiscent of those ob-
served in straight channels [19], with subtle differences arising from the
dynamic boundary condition at the free surface. Suspensions of pullers
(a > 0) are found to be always stable.

The first three unstable modes are illustrated in Fig. 2. In the dom-
inant eigenmode, a non-uniform shear flow develops across the lig-
uid layer. It both fosters and is driven by shear nematic alignment
D,,, which results is an active shear stress profile. It is this feedback
loop that is the responsible for the instability in sufficiently thick films
and at sufficiently high levels of activity, where active stresses be-
come strong enough to overcome viscous dissipation and rotational
diffusion. Because most swimmers in the base state are concentrated
near the two boundaries, active stresses are strongest there, which
explains the non-uniform shear rate across the film, with a nearly
constant velocity profile in the bulk of the film; stronger velocity
gradients arise near the boundaries, including at the free surface. This
non-uniformity across the film is especially noticeable in weakly diffu-
sive systems (small values of A) in which wall accumulation is strong. It
might seem counter-intuitive that the shear rate does not vanish at z = 1;
this stems from the fact that viscous stresses must balance the tangen-
tial active stresses exerted by the nematically aligned bacteria along the
interface. In the first unstable mode, the fluid velocity increases mono-
tonically with vertical position, reaching its maximum value at the free
surface.
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Fig. 2. First three unstable eigenmodes for one-dimensional perturbations (K =
0) in a suspension of pushers for the choice of parameters: Pe = 0.5, A = 0.2 and
a = —50. Linear unstable modes only involve the horizontal velocity 4 (a), hor-
izontal polarization /%, (b) and the off-diagonal component D, of the nematic
order tensor (c). The net bacterial horizontal velocity U,,, = Pe i, /c + i, defined
as the sum of self-propulsion and advection, is also shown in (d).

Another consequence of the fluid shear across the film is the develop-
ment of streamwise polarization . This results from the wall-normal
polarization in the base state, which after rotation in the local shear ac-
quires a streamwise component. Given the shear profile, particles near
the bottom wall reorient against the flow, as is well known to occur
in pressure-driven flow [4] and in spontaneous flows in microfluidic
channels [19]; near the free surface, however, streamwise polarization
is in the same direction as the flow. This results in an effective pop-
ulation splitting of the particles near the bottom and top surfaces, as
was also previously predicted in an imposed shear flow [48]. The net
swimmer velocity has contributions from both self-propulsion and ad-
vection by the flow: U,,, = Pesn, /c + a. Close to the free surface, both
contributions are of the same sign, with the disturbance flow enhancing
transport due to swimming. Near the bottom wall, they have opposite
signs, and the competition between both effects dictates the net direc-
tion of motion. Due to the no-slip condition at the wall, we find that U,,,,
is slightly negative at the wall, corresponding to the well-known phe-
nomenon of upstream swimming [4,7]. As shown in Fig. 2, additional
eigenmodes can also become unstable and involve more complex con-
centration, alignment and velocity profiles; these higher-order modes,
however, have weaker growth rates.

The critical level of activity a, required for these spontaneous flows
to emerge, or marginal stability limit, is plotted vs Pe in Fig. 3, where
we also compare it to the case of a planar channel with two no-slip
walls [19]. As anticipated, a, <0 indicating that only pusher suspen-
sions exhibit instabilities. In both cases, the level of activity needed for
instability increases with confinement as measured by Pe, which is to
be expected as viscous damping is more significant in narrow systems.
Unsurprisingly, spontaneous flows arise more easily in the presence of
a free surface than between two no-slip plates, as the latter cause more
dissipation. In very thin films, a, appears to asymptote to a constant
value independent of Pe.

5.2. Two-dimensional perturbations

We now turn our attention to two-dimensional perturbations for
which K > 0. Our numerical solution of the eigenvalue problem was first
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Fig. 3. One-dimensional marginal stability limit, showing the critical activity
parameter «, required for the onset of instabilities as a function of the swimming
Péclet number Pe for two different cases: a fluid film with a rigid wall at the
bottom and a free interface on top, and a straight channel with two rigid walls
[19]. Parameter values: A =0.5, f = 1.

(a) Concentration (b) Polarization

(c) Active foargcing
AT TT
IR

I

T

Fig. 4. Dominant two-dimensional eigenmode in a film of a pusher suspen-
sion with parameters ¢ = -1, G =0, Ca,, =10, K=1, Pe=1,A=05,=1.
For these parameters, S<O0 and the film is stable. The interface deflection is
as shown in Fig. 1, with a crest on the left and a valley on the right. The panels
show: (a) concentration field ¢, (b) polarization field r, (c) active forcing term
aV - D in the Stokes equations, and (d) fluid velocity a. In all cases, colors (blue
to red) correspond to the magnitude of the field. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version
of this article.)

tested in the case of « = 0 (passive liquid film with no microswimmers),
which can be solved analytically as shown in Appendix B and is un-
stable for G <0 (inverted film). Perfect agreement between theory and
numerics was found in this case. We first discuss results in the absence
of gravity (G = 0), and as in the case of one-dimensional perturbations
we find that instabilities arise only in suspensions of pushers (« < 0) and
at sufficiently high levels of activity. Figs. 4 and 5 illustrate the eigen-
modes corresponding to the largest growth rate for two levels of activity:
a = —1 (stable), and —100 (unstable). In both cases, the interface deflec-
tion is as shown in Fig. 1, with a crest on the left and a valley on the
right. Under this deflection, particles get squeezed near the valley result-
ing in a peak in the concentration field ¢, whereas a depletion manifests
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Fig. 5. Same quantities as shown in Fig. 4, for a higher activity level: « = —100.
For this value of a, the film is unstable with a positive growth rate S> 0. The
interface deflection is as shown in Fig. 1, with a crest on the left and a valley on
the right.

at the crest. The coupling of self-propulsion with the perturbed interface
shape along with base-state gradients of the orientational moments pro-
mote a decrease in the wall-normal polarization near the peaks of the
free surface and an increase near its valleys; streamwise polarization,
on the other hand, is maximum at the nodes in between them. In the
low-activity case of Fig. 4 (a = —1), the active forcing resulting from ne-
matic alignment is fairly weak but is seen to have a destabilizing effect,
with an upward push below the interface crest and a downward pull in
the valley; this active body force, however, is not sufficient to overcome
the stabilizing effect of surface tension, and the flow field indeed shows
opposite trends with a downward velocity near the crest and an upward
velocity near the valley. As a result, the system is stable and the inter-
face is expected to return to the flat base-state configuration. In the more
active case of Fig. 5 (@ = —100), active stresses are significantly stronger
and thus able to overcome capillary forces. This results in a change in
the direction of the disturbance flow, which further reinforces shear ne-
matic alignment and leads to an instability, with a net upward flow in
the crest of the interface.

More quantitative results are provided in Fig. 6, where the stability of
the system is explored in terms of the various dimensionless parameters.
The numerical dispersion relation, showing growth rate S as a function
of wavenumber K, is shown in Fig. 6(a) for different levels of activity.
The growth rate is found to plateau at small values of K, indicating
a long-wave instability in agreement with predictions for unbounded
systems [14]. As K> 1, the growth rate begins to drop and ultimately
becomes negative as capillary forces overcome the destabilizing effect of
active stresses. Unsurprisingly, stronger activity results in larger growth
rates, and also allows for a wider range of wavenumbers to become
unstable.

The effects of active capillary number Ca,. and Péclet number Pe
are explored in Fig. 6(b). Ca,. can be interpreted as the ratio of desta-
bilizing active forces over stabilizing capillary forces. As a result, the
growth rate S is an increasing function of Ca,,, and typically transi-
tions from negative to positive values as the system becomes unstable.
More interesting and less obvious is the dependence on Pe, which is a
measure of confinement. Increasing Pe, i.e., decreasing film thickness,
results in enhanced viscous damping due to the bottom no-slip wall.
Furthermore, it also causes the two accumulation layers at the wall and
free surface to merge, effectively enhancing the role of diffusion. This
results in a smoothing of the concentration, polarization, and nematic
alignment gradients in the base state. As a consequence of these two
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Fig. 6. Stability of the system as a function of the dimensionless parameters
of the problem: (a) Growth rate S as a function of wavenumber K for three
different values of the activity parameter a. Parameter values: G =0, Ca,,., =
10, Pe = 0.5, A=0.5, p = 1. (b) Growth rate S as a function of the active cap-
illary number Ca,, for three different values of the Péclet number Pe. Param-
eter values: G =0, a = =30, K = 1, A =0.5, g = 1. (c) Growth rate S as a func-
tion of the activity parameter « for four different values of the Bretherton con-
stant §, with # =0 and 1 corresponding to spheres and slender swimmers, re-
spectively. Parameter values: Ca,,, = 100, G =0, K = 1, Pe = 0.2, A = 0.5. Solid
symbols and empty symbols correspond to unstable and stable systems, respec-
tively. (d) Marginal stability, showing the critical activity level «, for instability
as a function of Péclet number Pe for three different values of the swimmer
parameter A. Parameter values: G =0, Ca,, =0.1, K =1, f = 1.

act

effects, increasing Pe tends to stabilize the system, and this trend is es-
pecially visible at low values of Ca,.

As discussed previously, instabilities arise from active stresses, which
hinge on the nematic alignment of the microswimmers in their self-
generated fluid flows. To confirm this mechanism, we consider the ef-
fect of swimmer shape in Fig. 6(c), where the growth rate is plotted as
a function of « for different values of the Bretherton constant f, rang-
ing from spheres to needles. In the case of spherical swimmers (§ = 0),
reorientation comes from vorticity only, and thus nematic alignment is
very weak, being induced by the presence of the boundaries rather than
by the flow. Consequently, active flows are weak too and we find that
the system is always stable regardless of the value of a. Departures from
the spherical shape lead to swimmer reorientation by both the local vor-
ticity and rate of strain, resulting in more significant nematic alignment
and active stresses. This results in a positive growth rate in pusher sus-
pensions at high activity levels, which increases as the aspect ratio of
the particles increases (§ — 1).

The transition to instability is further characterized in Fig. 6(d),
where we show the marginal stability curves as functions of Pe for dif-
ferent values of A. Increasing either Pe (confinement) or A (diffusion)
tends to smooth out gradients in nematic alignment, and hence the crit-
ical level of activity increases in absolute value. Interestingly, a, does
not plateau at large Pe as in the case of one-dimensional perturbations in
Fig. 3. We attribute this difference to the recirculating flows that emerge
in two dimensions, which are more strongly damped by viscous effects
as film thickness decreases.

In all the results presented so far, we found that suspensions of push-
ers can destabilize active films at sufficiently high values of |«|, whereas
pullers do not. To further emphasize the stabilizing quality of puller sus-
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Fig. 7. Dependence of the growth rate on the level of activity a for different
values of G. Note that we are studying the stability of an inverted film (negative
gravity). In this case, activity tends to stabilize the film for pullers. Parameter
values: Ca,, =1, K=1, Pe=1,A=0.5,=1.
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pensions, we now consider their effect on the gravitational instability
of an inverted film in which G<O0. In the absence of swimmers, such
films destabilize by the classic Rayleigh-Taylor instability, with a posi-
tive growth rate at long wavelengths that can be calculated analytically
as shown in Appendix B. When puller particles are added, a decrease in
growth rate occurs as a result of activity as shown in Fig. 7. At very high
activity levels, the growth rate in fact becomes negative, showing that
puller suspensions have the ability to stabilize gravitational instabilities
by nematically aligning and exerting active stresses that counteract the
gravitational body force. This curious finding highlights the subtle ef-
fect of active stresses in puller suspensions, which have received limited
attention in past work.
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Appendix A. Analytical solution for the equilibrium state

We derive an analytical solution for the equilibrium configuration
inside the film, which also serves as base state for the linear stability
analysis. In this configuration, there is no fluid flow (u® = w® = 0) and
the variables only depend on z. Symmetry also dictates that m’ = D° =
DY = 0. In the base state, both boundaries are equivalent, leading to a
symmetric distribution across the film which is identical to that between
two rigid plates [4]. Consequently, it is convenient in the following cal-
culation to choose the origin for the z axis at the film centerline.

Pressure gradient

In the base state, a pressure gradient develops to balance the grav-
itational body force and normal active stresses. In dimensionless form,
the z momentum equation is written

0
dPO _ dDzz
E g

-G. A.l
dz dz (A-D)

Orientational moments

After simplifications, the governing Egs. (21)—(23) for the orienta-
tional moments read

2d200
dz?

dm(z)
—Ped—z' + APe =0, (A2)
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dD° 1dc° d*m®
44 2 Z 0 _
_Pe<? T3z )T Abe dz2 2m; =0, A3
0 2n0
4Pe dm 2d D 0
_Fa'_zz + APe T;Z_()Du=0, (A4)

subject to the following no-flux conditions at the solid-fluid and air-fluid
interfaces:

0
—Penm? + AP — 0 at zzi%, (A5)
dm®
o, 1o 24My _ _ .1
_Pe<DZZ+§c )+APe =0 at z=z27. (A.6)
0
4Pe ,dDz; 1
———m,+ APe"——= =0 at =+-. A7
15" dz ) A7
To close the system, we also impose the normalization condition:
1/2
/ c(z)ydz=1. (A.8)
-1/2

Integrating Eq. (A.2) and making use of Eq. (A.5) to determine the con-
stant of integration, we get:

0
= Apede,

dz (A-9)

m(z)
which states that the vertical swimming and diffusive fluxes are every-
where balanced in the film [4]. Plugging this result into Eq. (A.3) and
integrating again yields:

> d?c0

0 )
D, (z) = A" Pe 2

—(2A+%)CO—A1, (A.10)
where A; is a constant of integration. Eqs. (A.9) and (A.10) express
both the wall-normal polarization m? and nematic order parameter
D(Z)z in terms of the concentration field c°. To determine c°, we insert
Egs. (A.9) and (A.10) into Eq. (A.4) and rearrange terms to obtain a
fourth-order non-homogeneous differential equation:

dtc? 64,

e

2 220 _ _
o - (&7 +v e + ¢33l = Spa (A.11)
where
12
(8A+ 3/5+ \/16A2 + 8A/5 + 9/25)
(= . (A12)
\/EAPe
1/2
(8A+3/5—\/16A2+8A/5+9/25)
V= (A.13)

\/EAPe

Taking into account the symmetry of the problem, the general solution
of Eq. (A.11) can be found as

co(z) =c,+ Aycosh{z + Ajcoshvz, (A.14)
where c, is the particular solution, and A, and A3 are constants of inte-

gration to be determined. The general solutions for m? and D%, are then
respectively:

m?(z) = AyAPe( sinh{z + A;APevsinhvz, (A.15)
D% (z) = A,(A?Pe*¢® —2A - 1/3) cosh(z
+A;(A?Pe?v? — 2A — 1/3) coshvz. (A.16)
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The constants ¢, A, and A3 are determined using conditions (A.6)-
(A.8):

vsinh 3 (A*Pe*v? — 2A - 3/5)

Ay = , A.17
z Q-9 @17
¢sinh £ (A2Pe2? — 24 - 3/5)
Ay =-— , (A.18)
Ql _QZ
¢ v
c, = 6A [Az cosh 5 + A3 cosh 5] s (A.19)
where
Q, = vsinh £ (6A cosh & + 2 sinh £ ) x [A’Pe*V? —2A -3/5],  (A.20)
2 2 ¢ 2
Q, = ¢ sinh £(6Acosh Y 4 2 Ginh 3) x [A2Pe¢? —2A-3/5].  (A2D)
2 2y 2

The analytical solution obtained here was compared to a numerical solu-
tion of the governing equations obtained by finite volumes, and perfect
agreement was found.

Appendix B. Stability analysis for a passive liquid film

In this appendix, we carry out the linear stability analysis for a pas-
sive viscous film in which no microswimmers are present. In this case,
the analysis is performed directly on the Stokes equations (24)-(26) and
boundary conditions where we set a = 0, and is amenable to an analyt-
ical solution. Taking the divergence of the momentum equation shows
that the pressure is harmonic, with general solution

p=C

1 eKz 4 sze’Kz,

(B.1)
where C,; and Cp, are constants of integration. Plugging this solution
into Egs. (25)-(26) and integrating yields expressions for the velocity
eigenfunctions 2 and :

i =C,eX% + Cpe ™ + CyzeX® + Cpyze X7, (B.2)

W = C,pek% + Cppe X2 + Cy2eK% + Cppyze K7, (B.3)

where

Cu =i2C—Ip<I’ Cu = _izC_;?’ (B4
w3 =%, w4 = % (B.5)

Applying continuity and the no-slip boundary condition at the bottom
wall provides four additional relationships:

(G = Cp) (G = Cp) B

AT TR T T T 0
c,+C c,+C

Cypy = _u’ Cypp = T (B.7)
4K3 4K3

We can now apply the kinematic boundary condition Eq. (19) as well
as the tangential and normal dynamic boundary conditions Eqs. (27)-
(28), where we note that |@|Ca_), = Ca!. Upon inserting Eqs. (B.1)-
(B.3) along with relations (B.4)-(B.7), we arrive at a system of three
equations involving C,;, Cp, hand S:

ek sinh K sinhK e K o
[21@ ETE ] " [_ 2K T 2K2]C"2 =Sh ®H
[eK 4+ CoshK ]cp] + [e’K - COSI?K ]cp2 =0, (B.9)

[KeX — cosh K|,y + [-Ke™™ — cosh K| €,y = = [GK? + Ca | K* | .
(B.10)

These can be combined to eliminate C,;, C,, and h. This provides the
dispersion relation for the growth rate S in terms of the parameters of
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the problem K, Ca,; and G:

_ 2K —sinh(2K)

= G+ K*Ca?}
4K (K? + cosh? K) (

vis

), (B.11)

This expression is in agreement with the previous result of Yiantsios
and Higgins [49] in the special case of negligible air density and vis-
cosity. The prefactor in this expression can be shown to be negative for
all values of K. The effect of surface tension is therefore always stabi-
lizing in planar films, and the larger the wavenumber the stronger the
capillary restoring force. Gravity can be destabilizing in inverted films
for which G <0, corresponding to the Rayleigh-Taylor instability. The
effect of gravity is strongest at low wavenumbers, with the buoyancy
force in inverted films tending to pull the bulge of the interface further
down and amplify the shape perturbation. In this case, there is a critical
viscous capillary number Ca¢, = K?/G for the instability to occur. In
the two limits of K — 0 and K — oo, the dispersion relation simplifies to:

2
S(K - 0)= —KT(G +K*Ca;}

- (B.12)

S(K > o) = -2 (G + K*Cay}).

7K (B.13)

Supplementary material

Supplementary material associated with this article can be found, in

the online version, at doi:10.1016/j.jnnfm.2019.06.004.
References

[1] A.P. Berke, L. Turner, H.C. Berg, E. Lauga, Hydrodynamic attraction of swimming
microorganisms by surfaces, Phys. Rev. Lett. 101 (2008) 038102.
T. Kaya, H. Koser, Characterization of hydrodynamic surface interactions of Es-
cherichia coli cell bodies in shear flow, Phys. Rev. Lett. 103 (2009) 138103.
G. Li, J.X. Tang, Accumulation of microswimmers near a surface mediated by colli-
sion and rotational Brownian motion, Phys. Rev. Lett. 103 (2009) 078101.
B. Ezhilan, D. Saintillan, Transport of a dilute active suspension in pressure-driven
channel flow, J. Fluid Mech. 777 (2015) 482-522.
W.R. DiLuzio, L. Turner, M. Mayer, P. Garstecki, D.B. Weibel, H.C. Berg, G.M. White-
sides, Escherichia coli swim on the right-hand side, Nature 435 (2005) 1271-1274.
E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Swimming in circles: motion
of bacteria near solid boundaries, Biophys. J. 90 (2006) 400-412.
T. Kaya, H. Koser, Direct upstream motility in E. coli, Biophys. J. 102 (2012)
1514-1523.
D.J. Kantsler V., M. Blayney, R.E. Goldstein, Rheotaxis facilitates upstream naviga-
tion of mammalian sperm cells, Elife 3 (2014) e02403.
D. Takagi, J. Palacci, A.B. Braunschweig, M.J. Shelley, J. Zhang, Hydrodynamic cap-
ture of microswimmers into sphere-bound orbits, Soft Matter 10 (2014) 1784-1789.
M. Davies Wykes, X. Zhong, J. Tong, T. Adachi, Y. Liu, L. Ristroph, M. Ward, M. Shel-
ley, J. Zhang, Guiding microscale swimmers using teardrop-shaped posts, Soft Matter
13 (2017) 4681-4688.
J. Tong, M. Shelley, Directed migration of microscale swimmers by an array of
shaped obstacles: modeling and shape optimization, SIAM J. Appl. Math. 78 (2018)
2370-2392.
R.A. Simha, S. Ramaswamy, Hydrodynamic fluctuations and instabilities in ordered
suspensions of self-propelled particles, Phys. Rev. Lett. 89 (2002) 058101.
D. Saintillan, M.J. Shelley, Orientational order and instabilities in suspensions of
self-locomoting rods, Phys. Rev. Lett. 99 (2007) 058102.
D. Saintillan, M.J. Shelley, Instabilities and pattern formation in active particle sus-
pensions: kinetic theory and continuum simulations, Phys. Rev. Lett. 100 (2008)
178103.
D. Saintillan, M.J. Shelley, Emergence of coherent structures and large-scale flows
in motile suspensions, J. R. Soc. Interface (2011). rsif20110355.
M. Theillard, D. Saintillan, Computational mean-field modeling of confined active
fluids, submitted (2019).

[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

64

[17]

[18]

[19]
[20]
[21]
[22]
[23]

[24]
[25]

[26]
[27]
[28]
[29]
[30]
[31]

[32]

[33]

[34]

[35]

[36]

[371
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]

[49]

Journal of Non-Newtonian Fluid Mechanics 269 (2019) 57-64

H. Wioland, F.G. Woodhouse, J. Dunkel, J.O. Kessler, R.E. Goldstein, Confinement
stabilizes a bacterial suspension into a spiral vortex, Phys. Rev. Lett. 110 (2013)
268102.

E. Lushi, H. Wioland, R.E. Goldstein, Fluid flows created by swimming bacteria drive
self-organization in confined suspensions, Proc. Natl. Acad. Sci. USA 111 (2014)
9733-9738.

M. Theillard, R. Alonso-Matilla, D. Saintillan, Geometric control of active collective
motion, Soft Matter 13 (2017) 363-375.

H. Wioland, E. Lushi, R.E. Goldstein, Directed collective motion of bacteria under
channel confinement, New J. Phys. 18 (2015) 075002.

A. Creppy, F. Plouraboué, O. Praud, X. Druart, S. Cazin, Symmetry-breaking phase
transitions in highly concentrated semen, J. R. Soc. Interface 13 (2016) 20160575.
D. Saintillan, The dilute rheology of swimming suspensions: a simple kinetic model,
Exp. Mech. 50 (2010) 1275-1281.

R. Alonso-Matilla, B. Ezhilan, D. Saintillan, Microfluidic rheology of active particle
suspensions: Kinetic theory, Biomicrofluidics 10 (2016) 043505.

D. Saintillan, Rheology of active fluids, Annu. Rev. Fluid Mech. 50 (2018) 563-592.
G. Vizsnyiczai, G. Frangipane, C. Maggi, F. Saglimbeni, B. S., R. Di Leonardo, Light
controlled 3D micromotors powered by bacteria, Nature Comm. 8 (2017) 15974.
A.E. Patteson, A. Gopinath, P.E. Arratia, The propagation of active-passive interfaces
in bacterial swarms, Nature Comm. 9 (2018) 5373.

A. Niirnberg, T. Kitzing, R. Grosse, Nucleating actin for invasion, Nat. Rev. Cancer
11 (2011) 177.

D. Hoshino, K.M. Branch, A.M. Weaver, Signaling inputs to invadopodia and po-
dosomes, J. Cell Sci. 126 (2013) 2979-2989.

P. Martin, S.M. Parkhurst, Parallels between tissue repair and embryo morphogene-
sis, Development 131 (2004) 3021-3034.

J. Sherratt, J. Murray, Mathematical analysis of a basic model for epidermal wound
healing, J. Math. Biol. 29 (1991) 389-404.

P.D. Dale, P.K. Maini, J.A. Sherratt, Mathematical modeling of corneal epithelial
wound healing, Math. Biosci. 124 (1994) 127-147.

S. Mark, R. Shlomovitz, N.S. Gov, M. Poujade, E. Grasland-Mongrain, P. Silberzan,
Physical model of the dynamic instability in an expanding cell culture, Biophys. J.
98 (2010) 361-370.

J. Zimmermann, M. Basan, H. Levine, An instability at the edge of a tissue of collec-
tively migrating cells can lead to finger formation during wound healing, Eur. Phys.
J. Spec. Top. 223 (2014) 1259-1264.

T. Sanchez, D.T. Chen, S.J. DeCamp, M. Heymann, Z. Dogic, Spontaneous motion in
hierarchically assembled active matter, Nature 491 (2012) 431-434.

F.C. Keber, E. Loiseau, T. Sanchez, S.J. DeCamp, L. Giomi, M.J. Bowick,
M.C. Marchetti, Z. Dogic, A.R. Bausch, Topology and dynamics of active nematic
vesicles, Science 345 (2014) 1135-1139.

E. Tjhung, D. Marenduzzo, M.E. Cates, Spontaneous symmetry breaking in active
droplets provides a generic route to motility, Proc. Natl. Acad. Sci. USA 109 (2012)
12381-12386.

T. Gao, Z. Li, Self-driven droplet powered by active nematic, Phys. Rev. Lett. 119
(2017) 108002.

J.-F. Joanny, S. Ramaswamy, A drop of active matter, J. Fluid Mech. 705 (2012)
46-57.

L. Giomi, A. DeSimone, Spontaneous division and motility in active nematic droplets,
Phys. Rev. Lett. 112 (2014) 147802.

C.A. Whitfield, D. Marenduzzo, R. Voituriez, R.J. Hawkins, Active polar fluid flow
in finite droplets, Eur. Phys. J. E 37 (2014) 1-15.

D. Khoromskaia, G.P. Alexander, Motility of active fluid drops on surfaces, Phys.
Rev. E 92 (2015) 062311.

R. Voituriez, J. Joanny, J. Prost, Generic phase diagram of active polar films, Phys.
Rev. Lett. 96 (2006) 028102.

S. Sankararaman, S. Ramaswamy, Instabilities and waves in thin films of living flu-
ids, Phys. Rev. Lett. 102 (2009) 118107.

M.L. Blow, M. Aqil, B. Liebchen, D. Marenduzzo, Motility of active nematic films
driven by “active anchoring”, Soft Matter 13 (2017) 6137-6144.

D. Saintillan, M.J. Shelley, Active suspensions and their nonlinear models, C. R.
Physique 14 (2013) 497-517.

Y. Hatwalne, S. Ramaswamy, M. Rao, R.A. Simha, Rheology of active-particle sus-
pensions, Phys. Rev. Lett. 92 (2004) 118101.

F.P. Bretherton, The motion of rigid particles in a shear flow at low Reynolds number,
J. Fluid Mech. 14 (1962) 284-304.

H. Nili, M. Kheyri, J. Abazari, A. Fahimniyabd, A. Naji, Population splitting of rodlike
swimmers in Couette flow, Soft Matter 13 (2017) 4494-4506.

S.G. Yiantsios, B.G. Higgins, Rayleigh-Taylor instability in thin viscous films, Phys.
Fluids 1 (1989) 1484-1501.


https://doi.org/10.1016/j.jnnfm.2019.06.004
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0001
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0001
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0001
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0001
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0001
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0002
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0002
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0002
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0003
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0003
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0003
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0004
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0004
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0004
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0005
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0005
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0005
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0005
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0005
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0005
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0005
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0005
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0006
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0006
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0006
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0006
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0006
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0007
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0007
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0007
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0008
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0008
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0008
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0008
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0009
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0009
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0009
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0009
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0009
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0009
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0010
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0010
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0010
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0010
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0010
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0010
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0010
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0010
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0010
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0010
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0011
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0011
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0011
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0012
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0012
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0012
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0013
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0013
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0013
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0014
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0014
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0014
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0015
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0015
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0015
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0015
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0016
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0016
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0016
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0016
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0016
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0016
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0017
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0017
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0017
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0017
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0018
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0018
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0018
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0018
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0019
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0019
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0019
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0019
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0020
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0020
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0020
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0020
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0020
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0020
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0021
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0021
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0022
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0022
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0022
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0022
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0023
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0023
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0024
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0024
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0024
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0024
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0024
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0024
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0024
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0025
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0025
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0025
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0025
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0026
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0026
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0026
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0026
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0027
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0027
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0027
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0027
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0028
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0028
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0028
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0029
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0029
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0029
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0030
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0030
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0030
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0030
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0031
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0031
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0031
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0031
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0031
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0031
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0031
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0032
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0032
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0032
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0032
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0033
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0033
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0033
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0033
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0033
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0033
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0034
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0034
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0034
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0034
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0034
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0034
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0034
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0034
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0034
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0034
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0035
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0035
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0035
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0035
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0036
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0036
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0036
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0037
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0037
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0037
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0038
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0038
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0038
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0039
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0039
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0039
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0039
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0039
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0040
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0040
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0040
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0041
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0041
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0041
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0041
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0042
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0042
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0042
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0043
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0043
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0043
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0043
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0043
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0044
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0044
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0044
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0045
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0045
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0045
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0045
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0045
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0046
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0046
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0047
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0047
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0047
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0047
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0047
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0047
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0048
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0048
http://refhub.elsevier.com/S0377-0257(19)30094-1/sbref0048

	Interfacial instabilities in active viscous films
	1 Introduction
	2 Theoretical model
	3 Non-dimensionalization
	4 Linear stability analysis
	5 Results and discussion
	5.1 One-dimensional perturbations
	5.2 Two-dimensional perturbations

	Acknowledgments
	Appendix A Analytical solution for the equilibrium state
	Pressure gradient
	Orientational moments

	Appendix B Stability analysis for a passive liquid film
	Supplementary material
	References


