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a b s t r a c t 

The interfacial stability of an active viscous film is analyzed theoretically. The film, which rests on a flat substrate 

and is bounded from above by an air-liquid interface, contains a suspension of active particles such as swimming 

microorganisms that self-propel, diffuse, and exert active stresses on the suspending Newtonian medium. Using 

a continuum model for the configuration of the suspension coupled to the forced Stokes equations for the fluid 

motion, we analyze the growth of linearized normal mode fluctuations with respect to the quiescent base state. 

In the absence of gravity, puller suspensions are found to be always stable, whereas films containing pushers can 

become unstable above a critical activity level where active stresses overcome the damping effects of viscosity 

and surface tension and drive interfacial deformations. Confinement, diffusion and capillary forces all act to 

stabilize the system, and we characterize the transition to instability in terms of the dimensionless parameters 

of the problem. We also address the case of inverted films subject to the Rayleigh-Taylor instability, where we 

demonstrate that active stresses generated by pullers have the ability to stabilize gravitationally unstable films 

by counteracting the effect of the gravitational body force. 
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. Introduction 

The interaction of active particles with boundaries results in unusual
roperties that hinge on their ability to self-propel in a noisy environ-
ent while inducing local fluid flows. In dilute systems, microswimmers

re known to accumulate at walls [1–4] where they display complex tra-
ectories [5,6] , swim against external flows [7,8] , glide around curved
illars [9] , and can show net rectified motion [10,11] . In semi-dilute
nd concentrated suspensions of pushers, instabilities can be triggered
y active stresses resulting from microswimmer disturbances [12–14] ,
ith the appearance of coherent structures and the generation of large-

cale flows that are chaotic in bulk systems [15] but interact with bound-
ries in non-trivial ways [16] . Under confinement, these instabilities can
ead to spontaneous pumping motions, such as the formation of steady
ounter-rotating vortices in circular domains [17–19] and the emer-
ence of unidirectional pumping states in periodic channels [19–21] ,
 phenomenon that can be explained based on an apparent reduction
n the system’s viscosity due to activity [22–24] . The control and reg-
lation of these internally-driven flows, while still in its infancy, could
e of great use for the design of microfluidic pumps and flow actuation
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evices that rely on active suspensions for the conversion of chemical
nergy into motion [25] without the need for externally actuated mov-
ng parts. 

In many biological systems, active materials also come in contact
nd exchange momentum with soft boundaries. Examples include the
preading of bacterial swarms [26] , cell migration during the forma-
ion of cancer metastasis [27,28] , embryogenesis [29] and wound heal-
ng processes [30–33] . In these examples, boundary deformations as
 result of active stresses couple back to fluid flows and internal mi-
rostructural dynamics, leading in some cases to instabilities and self-
rganization. Reconstituted systems inspired by cellular dynamics have
lso been of interest. In one example, Sanchez et al. [34] observed
he spontaneous motion of active drops containing a solution of exten-
ile microtubules networks. In a related system, Keber et al. [35] con-
idered active nematics encapsulated inside deformable lipid vesicles,
here complex unsteady deformations were reported. These obser-
ations have spurred various numerical [36,37] and theoretical [38–
1] models for the dynamics of active nematic droplets, either in bulk
r on surfaces, where active stresses can result in propulsion, spon-
aneous division or enhanced spreading. The dynamics of active ne-
atic films and their possible instabilities have also been explored in
 few models [42–44] . Our fundamental understanding of the interac-
ion between active suspensions and soft boundaries remains, however,
19 
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In this work, we focus on analyzing the forces exerted by a suspen-
ion of self-propelled particles on a deformable free surface and their
ole in driving or stabilizing interfacial instabilities. More specifically,
e consider a planar liquid film sitting on a flat substrate and bounded

rom above by a fluid interface. The film contains a suspension of self-
ropelled particles, such as swimming microorganisms, which exert ac-
ive stresses inside the liquid layer as they propel. We use a continuum
inetic theory developed in our previous work [19] to model the config-
ration of the suspension and its coupling to the mean-field flow, cap-
ured by the Stokes equations forced by an active stress tensor. These
tresses can generate fluid motions that in turn affect swimmer orien-
ations and can drive the interface out of equilibrium. While our previ-
us work [19] considered instabilities and spontaneous flows in systems
onfined by rigid boundaries, our focus here is on the coupling of ac-
ivity with the dynamics of the deformable interface. A linear stability
nalysis is performed to elucidate the roles of active stresses, viscous
amping and capillary forces on the system’s stability. As we demon-
trate, activity in suspensions of pushers tends to drive interfacial defor-
ations and instabilities, whereas puller suspensions have a stabilizing

ffect that can in fact help suppress existing instabilities such as the
ayleigh-Taylor instability of an inverted film. Details of the model and
overning equations are presented in Section 2 , along with their non-
imensionalization in Section 3 . The linear stability analysis is set up in
ection 4 and results are discussed in Section 5 . 

. Theoretical model 

We analyze the stability of a thin liquid film of an active suspen-
ion resting over an infinite planar rigid wall, as depicted in Fig. 1 . The
uspending fluid is incompressible and Newtonian, with density 𝜌 and
ynamic viscosity 𝜇. The film is bounded from above by a deformable
ir-liquid interface with constant surface tension Γ, and is subject to a
ravitational field with potential 𝜙𝑔 = − 𝜌𝑔𝑧 . We denote by h 0 the mean
lm thickness, and by 𝑧 = ℎ ( 𝑥, 𝑦, 𝑡 ) the liquid height at position ( x, y )
s the interface deforms. For simplicity, we restrict our analysis to two-
imensional deformations for which h ≡ h ( x, t ), and we do not expect
he physics to change qualitatively in the more general case. With this
arametrization, the unit normal and tangent vectors on the interface
re expressed as 

 = 

(
− 𝜕 𝑥 ℎ, 0 , 1 

)√
1 + ( 𝜕 𝑥 ℎ ) 2 

, 𝐭 = 

(
1 , 0 , 𝜕 𝑥 ℎ 

)√
1 + ( 𝜕 𝑥 ℎ ) 2 

, (1)

hile the interface curvature is given by 

= ∇ ⋅ 𝐧 = 

𝜕 𝑥𝑥 ℎ 

[1 + 

(
𝜕 𝑥 ℎ 

)2 ] 1∕2 . (2)

The model for the active suspension extends past formulations for
ulk and confined microswimmer suspensions [14,19,45] , and assumes
ig. 1. Problem definition: a three-dimensional liquid film of height h ( x, t ) con- 

aining a suspension of microswimmers rests on a flat substrate. 
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 dilute collection of self-propelled particles with constant swimming
elocity V 0 oriented along a unit director p . In addition to swimming,
he particles are also subject to Brownian motion, with constant trans-
ational and rotational diffusivities d t and d r , respectively. The parti-
les are assumed to be neutrally buoyant; as they swim, they exert ac-
ive dipolar stresses on the suspending medium, with constant stresslet
trength 𝜎0 [24,46] . The coefficient 𝜎0 is signed and depends on the de-
ails of the swimming mechanism; in particular, we distinguish between
o-called pushers ( 𝜎0 < 0), pullers ( 𝜎0 > 0) and movers ( 𝜎0 = 0) . 

The spatial and orientational configuration of the suspension can be
escribed by defining the probability density function 𝜓( x, p , t ) of find-
ng a particle at position x , with orientation p at time t . For convenience,
e also define its orientational moments over the unit sphere of orien-

ations Ω: 

( 𝐱, 𝑡 ) = ∫Ω 𝜓( 𝐱, 𝐩 , 𝑡 ) 𝑑𝐩 , (3) 

 ( 𝐱, 𝑡 ) = ∫Ω 𝜓( 𝐱, 𝐩 , 𝑡 ) 𝐩 𝑑𝐩 , (4) 

 ( 𝐱, 𝑡 ) = ∫Ω 𝜓( 𝐱, 𝐩 , 𝑡 ) 
(
𝐩𝐩 − 

𝐈 
3 

)
𝑑𝐩 , (5) 

here c is the concentration field, while m and D are the unnormalized
olarization and nematic tensor fields. Following a standard approach
45] , governing equations for these moments can be obtained from the
moluchowski equation for the probability density function, yielding
he coupled set of governing equations 

 𝑡 𝑐 = −∇ ⋅ 𝐅 𝑐 , (6) 

 𝑡 𝐦 = −∇ ⋅ 𝐅 𝑚 + 

( 3 
5 
𝛽𝐄 − 𝐖 

)
⋅𝐦 − 2 𝑑 𝑟 𝐦 , (7) 

 𝑡 𝐃 = −∇ ⋅ 𝐅 𝐷 + ( 𝐃 ⋅𝐖 − 𝐖 ⋅ 𝐃 ) − 6 𝑑 𝑟 𝐃 

+ 𝛽

[2 
5 
𝑐𝐄 + 

3 
7 
( 𝐄 ⋅ 𝐃 + 𝐃 ⋅ 𝐄 ) − 

2 
7 
( 𝐃 ∶ 𝐄 ) 𝐈 

]
, (8) 

here F c , F m 

and F D denote, respectively, the zeroth, first, and second
oments of the translational particle flux: 

 𝑐 = 𝑉 0 𝐦 + 𝐯 𝑐 − 𝑑 𝑡 ∇ 𝑐, (9) 

 𝑚 = 𝑉 0 

(
𝐃 + 

1 
3 
𝑐𝐈 
)
+ 𝐯𝐦 − 𝑑 𝑡 ∇ 𝐦 , (10) 

 𝐷 = 𝑉 0 

(⟨𝐩𝐩𝐩 ⟩ − 

1 
3 
𝐦𝐈 

)
+ 𝐯𝐃 − 𝑑 𝑡 ∇ 𝐃 . (11) 

ere v is the fluid velocity, 𝐄 = (∇ 𝐯 + ∇ 𝐯 𝑇 )∕2 and 𝐖 = (∇ 𝐯 − ∇ 𝐯 𝑇 )∕2
re the rate-of-strain and vorticity tensors, respectively, and 𝛽 is the
o-called Bretherton constant [47] , which characterizes swimmer shape
nd is close to 1 for slender particles such as bacteria. The nematic flux
 D involves the third orientational moment ⟨ppp ⟩, for which a closure
pproximation is needed. Here, we use a common linear closure in terms
f the polarization [45] : 

𝑝 𝑖 𝑝 𝑗 𝑝 𝑘 ⟩ = 

1 
5 
[
𝑚 𝑖 𝛿𝑗𝑘 + 𝑚 𝑗 𝛿𝑖𝑘 + 𝑚 𝑘 𝛿𝑖𝑗 

]
, (12) 

hich is a good approximation for orientational distributions that are
lose to isotropy. 

The boundary condition on the particles prescribes no translational
ux. As the air-liquid interface is a material surface that moves with the
uid velocity v , we prescribe the no-flux condition on the relative veloc-

ty between the interface and the swimmers, leading to the conditions: 

 ⋅ ( 𝐅 𝑐 − 𝐯 𝑐) = 0 at 𝑧 = 0 , ℎ ( 𝑥, 𝑡 ) , (13) 

 ⋅ ( 𝐅 𝑚 − 𝐯𝐦 ) = 𝟎 at 𝑧 = 0 , ℎ ( 𝑥, 𝑡 ) , (14) 

 ⋅ ( 𝐅 𝐷 − 𝐯𝐃 ) = 𝟎 at 𝑧 = 0 , ℎ ( 𝑥, 𝑡 ) , (15) 

hich express the balance of self-propulsion and translational diffusion
t the boundaries. 
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Assuming overdamped dynamics, the fluid velocity field v ( x, z, t )
nduced by the swimmers satisfies the Stokes equations forced by the
ctive stress contribution 𝜎0 ∇ · D [24] : 

 ⋅ 𝐯 = 0 , (16) 

∇ 𝑝 + 𝜇∇ 

2 𝐯 + ∇ 𝜙𝑔 + 𝜎0 ∇ ⋅ 𝐃 = 𝟎 . (17) 

e assume that the velocity satisfies the no-slip condition at the bottom
all 𝑧 = 0 . At the free surface, the dynamic boundary condition balances
iscous, active and capillary forces: 

 

(
𝐓 + 𝜎0 𝐃 

)
⋅ 𝐧 = Γ𝜅 𝐧 at 𝑧 = ℎ ( 𝑥, 𝑡 ) , (18)

here 𝐓 = − 𝑝 𝐈 + 𝜇(∇ 𝐯 + ∇ 𝐯 𝑇 ) is the Newtonian stress tensor in the liq-
id, and 𝜅( x, t ) is the local curvature defined in Eq. (2) . We also specify
 kinematic boundary condition: 

 𝑡 ℎ + 𝑢 𝜕 𝑥 ℎ = 𝑤 at 𝑧 = ℎ ( 𝑥, 𝑡 ) , (19)

hich states that the interface moves as a material surface. 

. Non-dimensionalization 

We proceed to non-dimensionalize both the governing equations and
oundary conditions. We scale all the variables using time scale 𝑑 −1 

𝑟 
,

ength scale h 0 , velocity scale h 0 d r and pressure scale 𝜇d r . The probabil-
ty distribution function 𝜓 is also scaled by the mean number density n .
his approach yields five dimensionless groups: 

= 

𝜎0 𝑛 

𝜇𝑑 𝑟 
, 𝐺 = 

𝜌𝑔ℎ 0 
𝜇𝑑 𝑟 

, 𝐶𝑎 𝑎𝑐𝑡 = 

|𝜎0 |𝑛ℎ 0 
Γ

, 𝑃 𝑒 = 

𝑉 0 
𝑑 𝑟 ℎ 0 

, Λ = 

𝑑 𝑡 𝑑 𝑟 

𝑉 2 0 

. (20) 

The activity parameter 𝛼 is a dimensionless dipole strength and
ompares active stresses to the dissipative effects of viscosity and ro-
ational diffusion. The gravitational number G represents the ratio of
ravitational forces to viscous forces. The active capillary number Ca act 

epresents the ratio of active forces to capillary forces. The Péclet num-
er Pe , which quantifies the level of confinement, compares the per-
istence length of the swimmers to the film thickness. Finally, Λ is a
wimmer-specific parameter that compares Brownian diffusion to self-
ropulsion. For convenience, we also define a viscous capillary number
 𝑎 𝑣𝑖𝑠 = 𝐶 𝑎 𝑎𝑐𝑡 ∕ |𝛼| = 𝜇𝑑 𝑟 ℎ 0 ∕Γ, which quantifies the ratio of viscous forces

o capillary forces and will be useful later on when comparing our pre-
ictions with classic results for passive viscous films. 

Upon scaling, the governing Eqs. (6) –(8) for the moments become 

 𝑡 𝑐 = −∇ ⋅
[
𝑃 𝑒 𝐦 + 𝐯 𝑐 − Λ𝑃 𝑒 2 ∇ 𝑐 

]
, (21) 

 𝑡 𝐦 = −∇ ⋅
[
𝑃 𝑒 

(
𝐃 + 

1 
3 
𝑐𝐈 
)
+ 𝐯𝐦 − Λ𝑃 𝑒 2 ∇ 𝐦 

]
+ 

(3 
5 
𝛽𝐄 − 𝐖 

)
⋅𝐦 − 2 𝐦 , 

(22) 

 𝑡 𝐃 = − ∇ ⋅
[
𝑃 𝑒 

(⟨𝐩𝐩𝐩 ⟩ − 

1 
3 
𝐦𝐈 

)
+ 𝐯𝐃 − Λ𝑃 𝑒 2 ∇ 𝐃 

]
+ 𝛽

[2 
5 
𝑐𝐄 + 

3 
7 
[ 𝐄 ⋅ 𝐃 + 𝐃 ⋅ 𝐄 ] − 

2 
7 
( 𝐃 ∶ 𝐄 ) 𝐈 

]
+ ( 𝐃 ⋅𝐖 − 𝐖 ⋅ 𝐃 ) − 6 𝐃 . 

(23) 

The dimensionless Stokes equations read 

 𝑥 𝑢 + 𝜕 𝑧 𝑤 = 0 , (24) 

 𝜕 𝑥 𝑝 + [ 𝜕 2 
𝑥 
𝑢 + 𝜕 2 

𝑧 
𝑢 ] + 𝛼[ 𝜕 𝑥 𝐷 𝑥𝑥 + 𝜕 𝑧 𝐷 𝑥𝑧 ] = 0 , (25) 

 𝜕 𝑧 𝑝 + [ 𝜕 2 
𝑥 
𝑤 + 𝜕 2 

𝑧 
𝑤 ] + 𝛼[ 𝜕 𝑥 𝐷 𝑥𝑧 + 𝜕 𝑧 𝐷 𝑧𝑧 ] − 𝐺 = 0 . (26) 

The kinematic boundary condition of Eq. (19) remains unchanged.
he dynamic boundary condition of Eq. (18) , after projection along
he tangential and normal directions, yields the two conditions at 𝑧 =
 ( 𝑥, 𝑡 ) : 

𝛼𝐷 𝑥𝑧 + 𝜕 𝑧 𝑢 + 𝜕 𝑥 𝑤 

]
(1 − 

(
𝜕 𝑥 ℎ 

)2 ) + 

[
𝛼( 𝐷 𝑧𝑧 − 𝐷 𝑥𝑥 ) + 4 𝜕 𝑧 𝑤 

]
𝜕 𝑥 ℎ = 0 , (27) 
59 
nd 

 𝑝 [1 + ( 𝜕 𝑥 ℎ ) 2 ] − 2 𝜕 𝑥 ℎ 
[
𝜕 𝑧 𝑢 + 𝜕 𝑥 𝑤 + 𝛼𝐷 𝑥𝑧 

]
( 𝜕 𝑥 ℎ ) 2 

[
2 𝜕 𝑥 𝑢 + 𝛼𝐷 𝑥𝑥 

]
+ 2 𝜕 𝑧 𝑤 + 𝛼𝐷 𝑧𝑧 = |𝛼|𝐶𝑎 −1 

𝑎𝑐𝑡 
𝜅. (28) 

. Linear stability analysis 

We use a temporal linear stability analysis to explore the role of ac-
ive stresses in driving or suppressing interfacial instabilities. The base
tate for the analysis is characterized by the absence of flow and a flat in-
erface; it is calculated analytically in Appendix A . We perturb the shape
f the interface as a normal mode of the form ℎ = 1 + 𝜖ℎ̂ e i 𝐾𝑥 + 𝑆𝑡 with
≪ 1, where 𝐾 = 𝑘ℎ 0 and 𝑆 = 𝑠 ∕ 𝑑 𝑟 are the dimensionless wavenum-
er and growth rate, respectively. Accordingly, we also perturb the
robability distribution function (and hence the orientational moments)
s well as the flow variables in the same way: 𝜓 = 𝜓 0 + 𝜖𝜓̂ ( 𝑧 )e i 𝐾𝑥 + 𝑆𝑡 ,
 = 𝜖𝐯̂ ( 𝑧 )e i 𝐾𝑥 + 𝑆𝑡 , 𝑝 = 𝑝 0 + 𝜖𝑝̂ ( 𝑧 )e i 𝐾𝑥 + 𝑆𝑡 , where base state variables are de-
oted with superscript 0. Following a standard method, we linearize the
oment equations retaining terms of order 𝜖, and obtain a set of coupled

inear ordinary differential equations in z relating the unknown eigen-
odes. We omit the full linearized system for brevity. Combined with

he linearized kinematic boundary condition 𝑆 ̂ℎ = 𝑤̂ at 𝑧 = 1 , these dif-
erential equations, after discretization by a finite volume scheme, can
e recast in the form 

𝐫 = 𝐌 1 ⋅ 𝐪 , (29)

here the matrix M 1 is defined from the governing equations and
oundary conditions, and r and q are both vectors of variables that are
iscretized in space: 

 = [ ̂𝑐 , 𝑚̂ 𝑥 , 𝑚̂ 𝑧 , 𝐷̂ 𝑥𝑥 , 𝐷̂ 𝑥𝑧 , 𝐷̂ 𝑧𝑧 , ̂ℎ ] 𝑇 , (30) 

 = [ ̂𝑐 , 𝑚̂ 𝑥 , 𝑚̂ 𝑧 , 𝐷̂ 𝑥𝑥 , 𝐷̂ 𝑥𝑧 , 𝐷̂ 𝑧𝑧 , ̂ℎ , ̂𝑢 , 𝑤̂ ] 𝑇 . (31) 

ote that the off-diagonal components 𝐷̂ 𝑥𝑦 and 𝐷̂ 𝑦𝑧 of the nematic order
ensor are in general non-zero, but only appear in the problem as non-
inear contributions. 𝐷̂ 𝑦𝑦 is also non-zero but is easily obtained from 𝐷̂ 𝑥𝑥 

nd 𝐷̂ 𝑧𝑧 using the trace-free property of 𝐃̂ . 
In order to transform Eq. (29) into an eigenvalue problem, we express

oth ̂𝑢 and 𝑤̂ in terms of the orientational moments. From the continuity
q. (24) , we first note that 

̂ = 

i 
𝐾 

𝑑 𝑤̂ 

𝑑𝑧 
. (32) 

nserting this relation into the x momentum Eq. (25) yields an expression
or the pressure: 

̂ = 

1 
𝐾 

2 
𝑑 3 𝑤̂ 

𝑑𝑧 3 
− 

𝑑 𝑤̂ 

𝑑𝑧 
+ 𝛼𝐷̂ 𝑥𝑥 − 

i 𝛼
𝐾 

𝑑 𝐷̂ 𝑥𝑧 

𝑑𝑧 
. (33) 

qs. (32) and (33) can be substituted into the z momentum Eq. (26) to
rovide a fourth-order non-homogeneous ODE for the vertical velocity
̂
 in terms of the nematic tensor components only: 

𝑑 4 𝑤̂ 

𝑑𝑧 4 
− 2 𝐾 

2 𝑑 
2 𝑤̂ 

𝑑𝑧 2 
+ 𝐾 

4 𝑤̂ = 𝛼𝐾 

2 

[ 

𝑑 𝐷̂ 𝑧𝑧 

𝑑𝑧 
− 

𝑑 𝐷̂ 𝑥𝑥 

𝑑𝑧 

] 

+ i 𝛼𝐾 

𝑑 2 𝐷̂ 𝑥𝑧 

𝑑𝑧 2 
+ i 𝛼𝐾 

3 𝐷̂ 𝑥𝑧 . 

(34) 

The no-slip condition at the bottom wall translates into: 

̂
 = 

𝑑 𝑤̂ 

𝑑𝑧 
= 0 at 𝑧 = 0 . (35) 

t the free surface 𝑧 = 1 , the tangential and normal boundary conditions
ead 

𝑑 2 𝑤̂ 

𝑑𝑧 2 
+ 𝐾 

2 𝑤̂ = i 𝛼𝐾 𝐷̂ 𝑥𝑧 + 𝛼𝐾 

2 ( 𝐷 

0 
𝑥𝑥 

− 𝐷 

0 
𝑧𝑧 
) ̂ℎ , (36) 
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Fig. 2. First three unstable eigenmodes for one-dimensional perturbations ( 𝐾 = 
0 ) in a suspension of pushers for the choice of parameters: 𝑃 𝑒 = 0 . 5 , Λ = 0 . 2 and 

𝛼 = −50 . Linear unstable modes only involve the horizontal velocity 𝑢̂ (a), hor- 

izontal polarization 𝑚̂ 𝑥 (b) and the off-diagonal component 𝐷̂ 𝑥𝑧 of the nematic 

order tensor (c). The net bacterial horizontal velocity 𝑈̂ 𝑛𝑒𝑡 = 𝑃 𝑒 𝑚̂ 𝑥 ∕ 𝑐 + ̂𝑢 , defined 

as the sum of self-propulsion and advection, is also shown in (d). 
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𝑑 3 𝑤̂ 

𝑑𝑧 3 
+ 3 𝐾 

2 𝑑 𝑤̂ 

𝑑𝑧 
= 𝛼𝐾 

2 ( ̂𝐷 𝑥𝑥 − 𝐷̂ 𝑧𝑧 ) − i 𝛼𝐾 

𝑑 𝐷̂ 𝑥𝑧 

𝑑𝑧 
− 

(
𝐺𝐾 

2 +|𝛼|𝐶 𝑎 −1 
𝑎𝑐𝑡 
𝐾 

4 )ℎ̂ , 
(37)

espectively. After discretization, Eqs. (32) and (34) , along with bound-
ry conditions (35) –(37) , provide a system of algebraic equations
or the velocity components in terms of the nematic tensor. After
ombining these equations with Eq. (29) , we obtain an eigenvalue
roblem of the form 𝑆𝐫 = 𝐌 2 ⋅ 𝐫, where r was previously defined in
q. (30) and M 2 is a matrix of dimensions (6 𝑁 𝑧 + 1) × (6 𝑁 𝑧 + 1) , where
 z is the number of points used for the discretization of the do-
ain in the vertical direction. This eigenvalue problem is then solved
umerically. 

. Results and discussion 

.1. One-dimensional perturbations 

We first analyze the stability to one-dimensional perturbations for
hich 𝐾 = 0 , where we explore the possibility of active stresses driving
nidirectional flows within the film. In this limit, the instability is not of
nterfacial type, the air-liquid interface remains flat, and the variables
epend on z only. In this special case, the dynamic boundary condition
implifies to a simple balance between active and viscous stresses. In
he base state, presented in Appendix A , there is no flow and particles
ccumulate at the boundaries as a consequence of the interplay of self-
ropulsion and diffusion. This accumulation is accompanied by a net
all-normal polarization profile that is antisymmetric with respect to

he mid-plane, with particles pointing on average towards the boundary
losest to them [4] . 

Inspection of the linearized equations reveals that unstable eigen-
odes only involve the horizontal velocity 𝑢̂ , streamwise polarization
̂  𝑥 and component 𝐷̂ 𝑥𝑧 of the nematic order tensor; other variables do
ot appear at linear order. Continuity requires that the vertical velocity
̂
 vanishes, thus we follow a different procedure to that introduced in
ection 4 . Instead, we construct, in a similar way, an eigenvalue prob-
em involving the linearized moment equations for m x and D xz , where
e make use of the horizontal Stokes momentum equation. We solve the
roblem numerically. Above a certain level of activity, suspensions of
ushers ( 𝛼 < 0) develop instabilities with a sequence of unstable modes
f increasing complexity. These instabilities are reminiscent of those ob-
erved in straight channels [19] , with subtle differences arising from the
ynamic boundary condition at the free surface. Suspensions of pullers
 𝛼 > 0) are found to be always stable. 

The first three unstable modes are illustrated in Fig. 2 . In the dom-
nant eigenmode, a non-uniform shear flow develops across the liq-
id layer. It both fosters and is driven by shear nematic alignment
̂
 𝑥𝑧 , which results is an active shear stress profile. It is this feedback

oop that is the responsible for the instability in sufficiently thick films
nd at sufficiently high levels of activity, where active stresses be-
ome strong enough to overcome viscous dissipation and rotational
iffusion. Because most swimmers in the base state are concentrated
ear the two boundaries, active stresses are strongest there, which
xplains the non-uniform shear rate across the film, with a nearly
onstant velocity profile in the bulk of the film; stronger velocity
radients arise near the boundaries, including at the free surface. This
on-uniformity across the film is especially noticeable in weakly diffu-
ive systems (small values of Λ) in which wall accumulation is strong. It
ight seem counter-intuitive that the shear rate does not vanish at 𝑧 = 1 ;

his stems from the fact that viscous stresses must balance the tangen-
ial active stresses exerted by the nematically aligned bacteria along the
nterface. In the first unstable mode, the fluid velocity increases mono-
onically with vertical position, reaching its maximum value at the free
urface. 
60 
Another consequence of the fluid shear across the film is the develop-
ent of streamwise polarization 𝑚̂ 𝑥 . This results from the wall-normal
olarization in the base state, which after rotation in the local shear ac-
uires a streamwise component. Given the shear profile, particles near
he bottom wall reorient against the flow, as is well known to occur
n pressure-driven flow [4] and in spontaneous flows in microfluidic
hannels [19] ; near the free surface, however, streamwise polarization
s in the same direction as the flow. This results in an effective pop-
lation splitting of the particles near the bottom and top surfaces, as
as also previously predicted in an imposed shear flow [48] . The net

wimmer velocity has contributions from both self-propulsion and ad-
ection by the flow: 𝑈̂ 𝑛𝑒𝑡 = 𝑃 𝑒 𝑚̂ 𝑥 ∕ 𝑐 + ̂𝑢 . Close to the free surface, both
ontributions are of the same sign, with the disturbance flow enhancing
ransport due to swimming. Near the bottom wall, they have opposite
igns, and the competition between both effects dictates the net direc-
ion of motion. Due to the no-slip condition at the wall, we find that 𝑈̂ 𝑛𝑒𝑡 
s slightly negative at the wall, corresponding to the well-known phe-
omenon of upstream swimming [4,7] . As shown in Fig. 2 , additional
igenmodes can also become unstable and involve more complex con-
entration, alignment and velocity profiles; these higher-order modes,
owever, have weaker growth rates. 

The critical level of activity 𝛼c required for these spontaneous flows
o emerge, or marginal stability limit, is plotted vs Pe in Fig. 3 , where
e also compare it to the case of a planar channel with two no-slip
alls [19] . As anticipated, 𝛼c < 0 indicating that only pusher suspen-

ions exhibit instabilities. In both cases, the level of activity needed for
nstability increases with confinement as measured by Pe , which is to
e expected as viscous damping is more significant in narrow systems.
nsurprisingly, spontaneous flows arise more easily in the presence of
 free surface than between two no-slip plates, as the latter cause more
issipation. In very thin films, 𝛼c appears to asymptote to a constant
alue independent of Pe . 

.2. Two-dimensional perturbations 

We now turn our attention to two-dimensional perturbations for
hich K > 0. Our numerical solution of the eigenvalue problem was first
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Fig. 3. One-dimensional marginal stability limit, showing the critical activity 

parameter 𝛼c required for the onset of instabilities as a function of the swimming 

Péclet number Pe for two different cases: a fluid film with a rigid wall at the 

bottom and a free interface on top, and a straight channel with two rigid walls 

[19] . Parameter values: Λ = 0 . 5 , 𝛽 = 1 . 

Fig. 4. Dominant two-dimensional eigenmode in a film of a pusher suspen- 

sion with parameters 𝛼 = −1 , 𝐺 = 0 , 𝐶𝑎 𝑎𝑐𝑡 = 10 , 𝐾 = 1 , 𝑃 𝑒 = 1 , Λ = 0 . 5 , 𝛽 = 1 . 
For these parameters, S < 0 and the film is stable. The interface deflection is 

as shown in Fig. 1 , with a crest on the left and a valley on the right. The panels 

show: (a) concentration field 𝑐 , (b) polarization field 𝐦̂ , (c) active forcing term 

𝛼∇ ⋅ 𝐃̂ in the Stokes equations, and (d) fluid velocity ̂𝐮 . In all cases, colors (blue 

to red) correspond to the magnitude of the field. (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version 

of this article.) 
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Fig. 5. Same quantities as shown in Fig. 4 , for a higher activity level: 𝛼 = −100 . 
For this value of 𝛼, the film is unstable with a positive growth rate S > 0. The 

interface deflection is as shown in Fig. 1 , with a crest on the left and a valley on 

the right. 
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ested in the case of 𝛼 = 0 (passive liquid film with no microswimmers),
hich can be solved analytically as shown in Appendix B and is un-

table for G < 0 (inverted film). Perfect agreement between theory and
umerics was found in this case. We first discuss results in the absence
f gravity ( 𝐺 = 0 ), and as in the case of one-dimensional perturbations
e find that instabilities arise only in suspensions of pushers ( 𝛼 < 0) and
t sufficiently high levels of activity. Figs. 4 and 5 illustrate the eigen-
odes corresponding to the largest growth rate for two levels of activity:
= −1 (stable), and −100 (unstable). In both cases, the interface deflec-

ion is as shown in Fig. 1 , with a crest on the left and a valley on the
ight. Under this deflection, particles get squeezed near the valley result-
ng in a peak in the concentration field 𝑐 , whereas a depletion manifests
61 
t the crest. The coupling of self-propulsion with the perturbed interface
hape along with base-state gradients of the orientational moments pro-
ote a decrease in the wall-normal polarization near the peaks of the

ree surface and an increase near its valleys; streamwise polarization,
n the other hand, is maximum at the nodes in between them. In the
ow-activity case of Fig. 4 ( 𝛼 = −1 ), the active forcing resulting from ne-
atic alignment is fairly weak but is seen to have a destabilizing effect,
ith an upward push below the interface crest and a downward pull in

he valley; this active body force, however, is not sufficient to overcome
he stabilizing effect of surface tension, and the flow field indeed shows
pposite trends with a downward velocity near the crest and an upward
elocity near the valley. As a result, the system is stable and the inter-
ace is expected to return to the flat base-state configuration. In the more
ctive case of Fig. 5 ( 𝛼 = −100 ), active stresses are significantly stronger
nd thus able to overcome capillary forces. This results in a change in
he direction of the disturbance flow, which further reinforces shear ne-
atic alignment and leads to an instability, with a net upward flow in

he crest of the interface. 
More quantitative results are provided in Fig. 6 , where the stability of

he system is explored in terms of the various dimensionless parameters.
he numerical dispersion relation, showing growth rate S as a function
f wavenumber K , is shown in Fig. 6 (a) for different levels of activity.
he growth rate is found to plateau at small values of K , indicating
 long-wave instability in agreement with predictions for unbounded
ystems [14] . As K ≳1, the growth rate begins to drop and ultimately
ecomes negative as capillary forces overcome the destabilizing effect of
ctive stresses. Unsurprisingly, stronger activity results in larger growth
ates, and also allows for a wider range of wavenumbers to become
nstable. 

The effects of active capillary number Ca act and Péclet number Pe

re explored in Fig. 6 (b). Ca act can be interpreted as the ratio of desta-
ilizing active forces over stabilizing capillary forces. As a result, the
rowth rate S is an increasing function of Ca act , and typically transi-
ions from negative to positive values as the system becomes unstable.
ore interesting and less obvious is the dependence on Pe , which is a
easure of confinement. Increasing Pe , i.e., decreasing film thickness,

esults in enhanced viscous damping due to the bottom no-slip wall.
urthermore, it also causes the two accumulation layers at the wall and
ree surface to merge, effectively enhancing the role of diffusion. This
esults in a smoothing of the concentration, polarization, and nematic
lignment gradients in the base state. As a consequence of these two



R. Alonso-Matilla and D. Saintillan Journal of Non-Newtonian Fluid Mechanics 269 (2019) 57–64 

Fig. 6. Stability of the system as a function of the dimensionless parameters 

of the problem: (a) Growth rate S as a function of wavenumber K for three 

different values of the activity parameter 𝛼. Parameter values: 𝐺 = 0 , 𝐶𝑎 𝑎𝑐𝑡 = 
10 , 𝑃 𝑒 = 0 . 5 , Λ = 0 . 5 , 𝛽 = 1 . (b) Growth rate S as a function of the active cap- 

illary number Ca act for three different values of the Péclet number Pe . Param- 

eter values: 𝐺 = 0 , 𝛼 = −30 , 𝐾 = 1 , Λ = 0 . 5 , 𝛽 = 1 . (c) Growth rate S as a func- 

tion of the activity parameter 𝛼 for four different values of the Bretherton con- 

stant 𝛽, with 𝛽 = 0 and 1 corresponding to spheres and slender swimmers, re- 

spectively. Parameter values: 𝐶𝑎 𝑎𝑐𝑡 = 100 , 𝐺 = 0 , 𝐾 = 1 , 𝑃 𝑒 = 0 . 2 , Λ = 0 . 5 . Solid 

symbols and empty symbols correspond to unstable and stable systems, respec- 

tively. (d) Marginal stability, showing the critical activity level 𝛼c for instability 

as a function of Péclet number Pe for three different values of the swimmer 

parameter Λ. Parameter values: 𝐺 = 0 , 𝐶𝑎 𝑎𝑐𝑡 = 0 . 1 , 𝐾 = 1 , 𝛽 = 1 . 
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Fig. 7. Dependence of the growth rate on the level of activity 𝛼 for different 

values of G . Note that we are studying the stability of an inverted film (negative 

gravity). In this case, activity tends to stabilize the film for pullers. Parameter 

values: 𝐶𝑎 𝑣𝑖𝑠 = 1 , 𝐾 = 1 , 𝑃 𝑒 = 1 , Λ = 0 . 5 , 𝛽 = 1 . 
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𝑑𝑧 
ffects, increasing Pe tends to stabilize the system, and this trend is es-
ecially visible at low values of Ca act . 

As discussed previously, instabilities arise from active stresses, which
inge on the nematic alignment of the microswimmers in their self-
enerated fluid flows. To confirm this mechanism, we consider the ef-
ect of swimmer shape in Fig. 6 (c), where the growth rate is plotted as
 function of 𝛼 for different values of the Bretherton constant 𝛽, rang-
ng from spheres to needles. In the case of spherical swimmers ( 𝛽 = 0 ),
eorientation comes from vorticity only, and thus nematic alignment is
ery weak, being induced by the presence of the boundaries rather than
y the flow. Consequently, active flows are weak too and we find that
he system is always stable regardless of the value of 𝛼. Departures from
he spherical shape lead to swimmer reorientation by both the local vor-
icity and rate of strain, resulting in more significant nematic alignment
nd active stresses. This results in a positive growth rate in pusher sus-
ensions at high activity levels, which increases as the aspect ratio of
he particles increases ( 𝛽→1). 

The transition to instability is further characterized in Fig. 6 (d),
here we show the marginal stability curves as functions of Pe for dif-

erent values of Λ. Increasing either Pe (confinement) or Λ (diffusion)
ends to smooth out gradients in nematic alignment, and hence the crit-
cal level of activity increases in absolute value. Interestingly, 𝛼c does
ot plateau at large Pe as in the case of one-dimensional perturbations in
ig. 3 . We attribute this difference to the recirculating flows that emerge
n two dimensions, which are more strongly damped by viscous effects
s film thickness decreases. 

In all the results presented so far, we found that suspensions of push-
rs can destabilize active films at sufficiently high values of | 𝛼|, whereas
ullers do not. To further emphasize the stabilizing quality of puller sus-
62 
ensions, we now consider their effect on the gravitational instability
f an inverted film in which G < 0. In the absence of swimmers, such
lms destabilize by the classic Rayleigh-Taylor instability, with a posi-
ive growth rate at long wavelengths that can be calculated analytically
s shown in Appendix B . When puller particles are added, a decrease in
rowth rate occurs as a result of activity as shown in Fig. 7 . At very high
ctivity levels, the growth rate in fact becomes negative, showing that
uller suspensions have the ability to stabilize gravitational instabilities
y nematically aligning and exerting active stresses that counteract the
ravitational body force. This curious finding highlights the subtle ef-
ect of active stresses in puller suspensions, which have received limited
ttention in past work. 
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ppendix A. Analytical solution for the equilibrium state 

We derive an analytical solution for the equilibrium configuration
nside the film, which also serves as base state for the linear stability
nalysis. In this configuration, there is no fluid flow ( 𝑢 0 = 𝑤 

0 = 0 ) and
he variables only depend on z . Symmetry also dictates that 𝑚 

0 
𝑥 
= 𝐷 

0 
𝑥𝑧 

=
 

0 
𝑧𝑥 

= 0 . In the base state, both boundaries are equivalent, leading to a
ymmetric distribution across the film which is identical to that between
wo rigid plates [4] . Consequently, it is convenient in the following cal-
ulation to choose the origin for the z axis at the film centerline. 

ressure gradient 

In the base state, a pressure gradient develops to balance the grav-
tational body force and normal active stresses. In dimensionless form,
he z momentum equation is written 

𝑑𝑝 0 

𝑑𝑧 
= 𝛼

𝑑𝐷 

0 
𝑧𝑧 

𝑑𝑧 
− 𝐺. (A.1) 

rientational moments 

After simplifications, the governing Eqs. (21) –(23) for the orienta-
ional moments read 

 𝑃 𝑒 
𝑑𝑚 

0 
𝑧 

𝑑𝑧 
+ Λ𝑃 𝑒 2 𝑑 

2 𝑐 0 

2 = 0 , (A.2) 

https://doi.org/10.13039/100000001
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e[
[
[
T  
 𝑃 𝑒 

( 

𝑑𝐷 

0 
𝑧𝑧 

𝑑𝑧 
+ 

1 
3 
𝑑𝑐 0 

𝑑𝑧 

) 

+ Λ𝑃 𝑒 2 
𝑑 2 𝑚 

0 
𝑧 

𝑑𝑧 2 
− 2 𝑚 

0 
𝑧 
= 0 , (A.3) 

 

4 𝑃 𝑒 
15 

𝑑𝑚 

0 
𝑧 

𝑑𝑧 
+ Λ𝑃 𝑒 2 

𝑑 2 𝐷 

0 
𝑧𝑧 

𝑑𝑧 2 
− 6 𝐷 

0 
𝑧𝑧 

= 0 , (A.4) 

ubject to the following no-flux conditions at the solid-fluid and air-fluid
nterfaces: 

 𝑃 𝑒𝑚 

0 
𝑧 
+ Λ𝑃 𝑒 2 𝑑𝑐 

0 

𝑑𝑧 
= 0 at 𝑧 = ± 

1 
2 
, (A.5) 

 𝑃 𝑒 

(
𝐷 

0 
𝑧𝑧 

+ 

1 
3 
𝑐 0 
)
+ Λ𝑃 𝑒 2 

𝑑𝑚 

0 
𝑧 

𝑑𝑧 
= 0 at 𝑧 = ± 

1 
2 
, (A.6) 

 

4 𝑃 𝑒 
15 

𝑚 

0 
𝑧 
+ Λ𝑃 𝑒 2 

𝑑𝐷 

0 
𝑧𝑧 

𝑑𝑧 
= 0 at 𝑧 = ± 

1 
2 
. (A.7) 

o close the system, we also impose the normalization condition: 

1∕2 

−1∕2 
𝑐( 𝑧 ) 𝑑𝑧 = 1 . (A.8)

ntegrating Eq. (A.2) and making use of Eq. (A.5) to determine the con-
tant of integration, we get: 

 

0 
𝑧 
( 𝑧 ) = Λ𝑃 𝑒 𝑑𝑐 

0 

𝑑𝑧 
, (A.9)

hich states that the vertical swimming and diffusive fluxes are every-
here balanced in the film [4] . Plugging this result into Eq. (A.3) and

ntegrating again yields: 

 

0 
𝑧𝑧 
( 𝑧 ) = Λ2 𝑃 𝑒 2 

𝑑 2 𝑐 0 

𝑑𝑧 2 
− 

(
2Λ + 

1 
3 

)
𝑐 0 − 𝐴 1 , (A.10)

here A 1 is a constant of integration. Eqs. (A.9) and (A.10) express
oth the wall-normal polarization 𝑚 

0 
𝑧 

and nematic order parameter
 

0 
𝑧𝑧 

in terms of the concentration field c 0 . To determine c 0 , we insert
qs. (A.9) and (A.10) into Eq. (A.4) and rearrange terms to obtain a
ourth-order non-homogeneous differential equation: 

𝑑 4 𝑐 0 

𝑑𝑧 4 
− 

(
𝜁2 + 𝜈2 

)𝑑 2 𝑐 0 
𝑑𝑧 2 

+ 𝜁2 𝜈2 𝑐 0 = − 

6 𝐴 1 
Λ3 𝑃 𝑒 4 

, (A.11)

here 

= 

(
8Λ + 3∕5 + 

√
16Λ2 + 8Λ∕5 + 9∕25 

)1∕2 

√
2 Λ𝑃 𝑒 

, (A.12) 

= 

(
8Λ + 3∕5 − 

√
16Λ2 + 8Λ∕5 + 9∕25 

)1∕2 

√
2 Λ𝑃 𝑒 

. (A.13) 

aking into account the symmetry of the problem, the general solution
f Eq. (A.11) can be found as 

 

0 ( 𝑧 ) = 𝑐 𝑝 + 𝐴 2 cosh 𝜁𝑧 + 𝐴 3 cosh 𝜈𝑧 , (A.14)

here c p is the particular solution, and A 2 and A 3 are constants of inte-
ration to be determined. The general solutions for 𝑚 

0 
𝑧 

and 𝐷 

0 
𝑧𝑧 

are then
espectively: 

 

0 
𝑧 
( 𝑧 ) = 𝐴 2 Λ𝑃 𝑒𝜁 sinh 𝜁𝑧 + 𝐴 3 Λ𝑃 𝑒𝜈 sinh 𝜈𝑧 , (A.15) 

 

0 
𝑧𝑧 
( 𝑧 ) = 𝐴 2 

(
Λ2 𝑃 𝑒 2 𝜁2 − 2Λ − 1∕3 

)
cosh 𝜁𝑧 

+ 𝐴 3 
(
Λ2 𝑃 𝑒 2 𝜈2 − 2Λ − 1∕3 

)
cosh 𝜈𝑧 . (A.16) 
d  

63 
The constants c p , A 2 and A 3 are determined using conditions (A.6) –
A.8) : 

 2 = 

𝜈 sinh 𝜈2 
(
Λ2 𝑃 𝑒 2 𝜈2 − 2Λ − 3∕5 

)
Ω1 − Ω2 

, (A.17) 

 3 = − 

𝜁 sinh 𝜁2 
(
Λ2 𝑃 𝑒 2 𝜁2 − 2Λ − 3∕5 

)
Ω1 − Ω2 

, (A.18) 

 𝑝 = 6Λ
[ 
𝐴 2 cosh 

𝜁

2 
+ 𝐴 3 cosh 

𝜈

2 

] 
, (A.19) 

here 

1 = 𝜈 sinh 𝜈
2 

( 

6Λ cosh 𝜁
2 
+ 

2 
𝜁
sinh 𝜁

2 

) 

×
[
Λ2 𝑃 𝑒 2 𝜈2 − 2Λ − 3∕5 

]
, (A.20) 

2 = 𝜁 sinh 𝜁
2 

(
6Λ cosh 𝜈

2 
+ 

2 
𝜈
sinh 𝜈

2 

)
×
[
Λ2 𝑃 𝑒 2 𝜁2 − 2Λ − 3∕5 

]
. (A.21) 

he analytical solution obtained here was compared to a numerical solu-
ion of the governing equations obtained by finite volumes, and perfect
greement was found. 

ppendix B. Stability analysis for a passive liquid film 

In this appendix, we carry out the linear stability analysis for a pas-
ive viscous film in which no microswimmers are present. In this case,
he analysis is performed directly on the Stokes equations (24) –(26) and
oundary conditions where we set 𝛼 = 0 , and is amenable to an analyt-
cal solution. Taking the divergence of the momentum equation shows
hat the pressure is harmonic, with general solution 

̂ = 𝐶 𝑝 1 e 𝐾𝑧 + 𝐶 𝑝 2 e − 𝐾𝑧 , (B.1) 

here C p 1 and C p 2 are constants of integration. Plugging this solution
nto Eqs. (25) –(26) and integrating yields expressions for the velocity
igenfunctions 𝑢̂ and 𝑤̂ : 

̂ = 𝐶 𝑢 1 e 𝐾𝑧 + 𝐶 𝑢 2 e − 𝐾𝑧 + 𝐶 𝑢 3 𝑧 e 𝐾𝑧 + 𝐶 𝑢 4 𝑧 e − 𝐾𝑧 , (B.2) 

̂
 = 𝐶 𝑤 1 e 𝐾𝑧 + 𝐶 𝑤 2 e − 𝐾𝑧 + 𝐶 𝑤 3 𝑧 e 𝐾𝑧 + 𝐶 𝑤 4 𝑧 e − 𝐾𝑧 , (B.3) 

here 

 𝑢 3 = 

i 𝐶 𝑝 1 
2 𝐾 

, 𝐶 𝑢 4 = − 

i 𝐶 𝑝 2 
2 𝐾 

, (B.4) 

 𝑤 3 = 

𝐶 𝑝 1 

2 𝐾 

2 , 𝐶 𝑤 4 = 

𝐶 𝑝 2 

2 𝐾 

2 . (B.5) 

pplying continuity and the no-slip boundary condition at the bottom
all provides four additional relationships: 

 𝑢 1 = 

i( 𝐶 𝑝 1 − 𝐶 𝑝 2 ) 
4 𝐾 

2 , 𝐶 𝑢 2 = − 

i( 𝐶 𝑝 1 − 𝐶 𝑝 2 ) 
4 𝐾 

2 , (B.6) 

 𝑤 1 = − 

𝐶 𝑝 1 + 𝐶 𝑝 2 

4 𝐾 

3 , 𝐶 𝑤 2 = 

𝐶 𝑝 1 + 𝐶 𝑝 2 

4 𝐾 

3 . (B.7) 

e can now apply the kinematic boundary condition Eq. (19) as well
s the tangential and normal dynamic boundary conditions Eqs. (27) –
28) , where we note that |𝛼|𝐶 𝑎 −1 

𝑎𝑐𝑡 
= 𝐶 𝑎 −1 

𝑣𝑖𝑠 
. Upon inserting Eqs. (B.1) –

B.3) along with relations (B.4) –(B.7) , we arrive at a system of three
quations involving C p 1 , C p 2 , ℎ̂ and S : 

 

e 𝐾 

2 𝐾 

2 − 

sinh 𝐾 

2 𝐾 

3 

] 
𝐶 𝑝 1 + 

[ 
− 

sinh 𝐾 

2 𝐾 

3 + 

e − 𝐾 

2 𝐾 

2 

] 
𝐶 𝑝 2 = 𝑆 ̂ℎ , (B.8) 

e 𝐾 + 

cosh 𝐾 

𝐾 

]
𝐶 𝑝 1 + 

[
e − 𝐾 − 

cosh 𝐾 

𝐾 

]
𝐶 𝑝 2 = 0 , (B.9) 

𝐾 e 𝐾 − cosh 𝐾 

]
𝐶 𝑝 1 + 

[
− 𝐾 e − 𝐾 − cosh 𝐾 

]
𝐶 𝑝 2 = − 

[
𝐺𝐾 

2 + 𝐶 𝑎 −1 
𝑣𝑖𝑠 
𝐾 

4 
]
ℎ̂ . 

(B.10) 

hese can be combined to eliminate C p 1 , C p 2 and ℎ̂ . This provides the
ispersion relation for the growth rate S in terms of the parameters of
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he problem K, Ca vis and G : 

 = 

2 𝐾 − sinh (2 𝐾) 
4 𝐾 ( 𝐾 

2 + cosh 2 𝐾 ) 

(
𝐺 + 𝐾 

2 𝐶𝑎 −1 
𝑣𝑖𝑠 

)
. (B.11)

his expression is in agreement with the previous result of Yiantsios
nd Higgins [49] in the special case of negligible air density and vis-
osity. The prefactor in this expression can be shown to be negative for
ll values of K . The effect of surface tension is therefore always stabi-
izing in planar films, and the larger the wavenumber the stronger the
apillary restoring force. Gravity can be destabilizing in inverted films
or which G < 0, corresponding to the Rayleigh-Taylor instability. The
ffect of gravity is strongest at low wavenumbers, with the buoyancy
orce in inverted films tending to pull the bulge of the interface further
own and amplify the shape perturbation. In this case, there is a critical
iscous capillary number 𝐶 𝑎 𝑐 

𝑣𝑖𝑠 
= 𝐾 

2 ∕ 𝐺 for the instability to occur. In
he two limits of K →0 and K →∞, the dispersion relation simplifies to:

( 𝐾 → 0) = − 

𝐾 

2 

3 
(
𝐺 + 𝐾 

2 𝐶𝑎 −1 
𝑣𝑖𝑠 

)
, (B.12)

( 𝐾 → ∞) = − 

1 
2 𝐾 

(
𝐺 + 𝐾 

2 𝐶𝑎 −1 
𝑣𝑖𝑠 

)
. (B.13)

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.jnnfm.2019.06.004 . 
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