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The effects of an external shear flow on the dynamics and pattern formation in a dilute suspension
of swimming micro-organisms are investigated using a linear stability analysis and
three-dimensional numerical simulations, based on the kinetic model previously developed by �D.
Saintillan and M. J. Shelley, Phys. Fluids 20, 123304 �2008��. The external shear flow is found to
damp the instabilities that occur in these suspensions by controlling the orientation of the particles.
We demonstrate in our simulations that the rate of damping is direction-dependent: it is fastest in the
flow direction, but slowest in the direction perpendicular to the shear plane. As a result, transitions
from three- to two- to one-dimensional instabilities are observed to occur as shear rate increases, and
above a certain shear rate the instabilities altogether disappear. The density patterns and complex
flows that arise at long time in the suspensions are also analyzed from the numerical simulations
using standard techniques from the literature on turbulent flows. The imposed shear flow is found
to have an effect on both density patterns and flow structures, which typically align with the
extensional axis of the external flow. The disturbance flows in the simulations are shown to exhibit
similarities with turbulent flows, and in particular two of the seemingly universal characteristics of
turbulent flows also occur, namely: �i� the bias of Q-R plots toward the second and fourth quadrants,
corresponding to stable focus/stretching and unstable node/saddle/saddle flow topologies,
respectively, and �ii� the alignment of the vorticity vector with the intermediate strain-rate
eigenvector. However, the flows described herein also significantly differ from turbulent flows
owing to the strong predominance of large scales, as exemplified by the very rapid decay of the
kinetic energy spectrum, an effect further enhanced after the transitions to two- and one-dimensional
instabilities. © 2011 American Institute of Physics. �doi:10.1063/1.3529411�

I. INTRODUCTION

The emergence of large-scale density patterns and
correlated flows in suspensions of self-propelled particles
such as swimming micro-organisms1–3 or artificial micro-
swimmers4–9 is a well-documented phenomenon that has re-
ceived significant attention over the last decade.10–12 These
flows and patterns have been reported in a number of
experiments,13–21 where they have been shown to be charac-
terized by large correlation lengths that greatly exceed the
swimmer dimensions,13–17 chaotic and intermittent dynamics
exhibiting strong jets and vortices,13,14 as well as enhanced
swimmer and passive tracer diffusion.18–20 These phenomena
have also been reproduced in discrete particle simulations
using various levels of approximation, including simple
dipole models,22,23 Stokesian dynamics simulations,24,25

boundary integral methods,26 and slender-body models.27

The effects described above are all consequences of the
long-ranged hydrodynamic interactions that arise between
the swimming particles in the Stokes flow regime. As a
single particle propels itself through a viscous liquid, it ex-
erts to leading order a force dipole on the surrounding fluid,
which is a consequence of the balance between the equal
and opposite thrust and drag forces resulting from
propulsion.22,28,29 With the exception of some unusual types

of particles with perfect fore-aft symmetry, this dipole arises
universally for all types of swimmers, the only distinguishing
characteristic being its sign, which can be either positive or
negative depending on the mechanism for swimming. Spe-
cifically, pusher particles, which exert a propulsive thrust
near their tail, induce a negative force dipole, whereas puller
particles, which exert a thrust near their head, induce a posi-
tive force dipole. In the far field, this dipole drives a distur-
bance flow that decays slowly as the inverse square separa-
tion distance from the particle center. When several particles
are swimming together in a suspension, the superposition of
all the disturbance flows they induce couples their motions in
a nontrivial way, resulting in some cases in correlated dy-
namics as observed in experiments13,14 and simulations.23,27

To elucidate the mechanisms leading to these correlated
dynamics, several continuum models have been de-
veloped.28–37 These models, going back to the seminal work
of Aditi Simha and Ramaswamy,28 couple evolution equa-
tions for the configuration of the suspension to the Navier–
Stokes or Stokes equations for the fluid flow, via an effective
coarse-grained stress tensor capturing the effect of the force
dipoles exerted by the swimmers on wavelengths much
longer than the characteristic particle size. In a recent study,
Saintillan and Shelley29,30 developed a kinetic theory based
on a general Smoluchowski equation for the particle distri-
bution function coupled to the Stokes equations for the mac-
roscale flow driven by the dipoles due to swimming, anda�Electronic mail: dstn@illinois.edu.
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applied it to study the evolution of an initially homogeneous
and isotropic suspension. Using a linear stability analysis,
they uncovered a new instability occurring at long wave-
lengths in suspensions of pusher particles, which results in
their local alignment at short times owing to mean-field hy-
drodynamic interactions. Such an instability does not arise
for pullers. To investigate the long-time dynamics, they also
performed two-dimensional nonlinear simulations of their ki-
netic equations, and showed that the instability also results in
the growth of concentration fluctuations, in the form of dense
patterns that form and break up repeatedly in time, accom-
panied by complex chaotic flows on the scale of the system
size.

As most previous studies have focused on the behavior
of these suspensions in quiescent liquids, little is known on
the effects of an external flow on the pattern formation and
dynamics in these systems. Such effects may play an impor-
tant role in natural phenomena where micro-organisms often
evolve in complex flow environments.38–40 They are also di-
rectly relevant to the effective rheology of swimming particle
suspensions, which have been shown to exhibit unusual and
striking features such as decreased effective viscosities in
pusher suspensions.41 While these features have been ex-
plained theoretically using very simple models for isolated
swimmers in an imposed flow,42–47 the effects of hydrody-
namic interactions and pattern formation have not been ad-
dressed and have remained completely unknown up to now.

The object of the present work is to investigate the ef-
fects of an externally imposed simple shear flow on the in-
stabilities, dynamics, and pattern formation that are known to
arise in suspensions of micro-organisms and have previously
been characterized in quiescent environments. To this end,
we extend the kinetic model developed by Saintillan and
Shelley29,30 in Sec. II to account for an external flow. This
model is then used to perform a stability analysis in Sec. III,
where we show that the imposed flow has a damping effect
on the instability that occurs in quiescent suspensions. In
Sec. IV, we complement the results from the stability analy-
sis by fully nonlinear three-dimensional simulations of the
kinetic equations. In the absence of shear, these simulations
extend the two-dimensional simulations previously per-
formed by Saintillan and Shelley.29,30 When shear is applied,
the simulations confirm the prediction of the stability analy-
sis, and demonstrate that the rate of damping is direction-
dependent and is strongest in the flow direction but slowest
in the direction perpendicular to the shear plane. The char-
acteristics of the three-dimensional density patterns and flow
fields that arise are also analyzed in detail using techniques
from the turbulent flow literature. We conclude in Sec. V.

II. KINETIC MODEL

A. Governing equations

Following the kinetic model previously developed by
Saintillan and Shelley,29,30 we represent the configuration of
a suspension of swimming particles by means of a time-
dependent probability distribution function ��x ,p , t� for the
particle center-of-mass position x and orientation vector p,

which has unit norm and describes the direction of swim-
ming. This distribution function satisfies a Smoluchowski
equation48

��

�t
= − �x · �ẋ�� − �p · �ṗ�� , �1�

where �p is the gradient operator on the surface of the unit
sphere � and is defined as

�p = �I − pp� ·
�

�p
. �2�

The particle fluxes ẋ and ṗ in Eq. �1� are modeled as

ẋ = U0p + v − D�x�ln �� , �3�

ṗ = �I − pp� · �xv · p − d�p�ln �� . �4�

In Eq. �3�, the center-of-mass flux is expressed as the sum of
three terms, accounting for particle swimming with velocity
U0p, advection by the local fluid velocity v�x , t�, and center-
of-mass diffusion with isotropic diffusivity D, assumed to be
constant. Similarly, Eq. �4� accounts for particle rotation un-
der the effect of the local velocity gradient via Jeffery’s
equation,49 where it is assumed that the particle has a high
aspect ratio. Rotational diffusion is also included with con-
stant diffusivity d. Note that the assumption of constant dif-
fusivities should be viewed as an approximation, and that in
a real system these diffusivities may depend on the orienta-
tion of the particles or on concentration for instance. Finally,
the probability distribution function is normalized as

1

V
�

V

dx�
�

dp��x,p,t� = n . �5�

Here, V=L3 denotes the volume of the system and is as-
sumed to be a cube of linear dimension L, and n=N /V de-
notes the mean number density of the suspension, where N is
the total number of swimming particles.

To close Eqs. �1�, �3�, and �4�, the fluid velocity v and
corresponding velocity gradient �xv must be determined.
Here, we decompose the velocity as the sum of an imposed
linear flow with uniform and constant velocity gradient A
and of the disturbance velocity u induced by the particles as
they swim:

v�x,t� = x · A + u�x,t� . �6�

For a linear shear flow in the x-direction, the tensor A is
expressed as A=Sŷx̂, where S is the constant shear rate �see
Fig. 1�, and x̂ and ŷ denote unit vectors in the x- and
y-directions. In the low-Reynolds-number regime relevant to
the locomotion of micro-organisms, the disturbance fluid
flow driven by the particles satisfies the Stokes equations:

�xq − ��x
2u = �x · �p, �x · u = 0, �7�

where � is the dynamic viscosity of the suspending fluid, and
q is the pressure. In Eq. �7�, �p�x , t� is the particle extra
stress, obtained as the orientational average of the force di-
poles S�p� exerted by the particles on the fluid50,51
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�p�x,t� = �
�

S�p���x,p,t�dp . �8�

For a swimming particle in an external flow, the dipole S�p�
arises from two contributions: resistance to stretching under
the local flow, and self-propulsion. The dipole due to the
external flow can be expressed as52,53

S f�p� = C�pp:A��pp −
I

3
� , �9�

where the constant C depends on the particle shape; for a
slender particle of inverse aspect ratio �, it can be modeled
using slender-body theory52,53 as C=��l3 /6 ln�2 /��. Note
that in all rigor, S f�p� should also include a contribution
from the disturbance velocity gradient �xu. However, this
contribution is of order O�n2� compared to order O�n� for the
contribution of the external flow, so we can safely neglect it
in the limit of a dilute suspension. Finally, the permanent
dipole resulting from self-propulsion can be expressed in the
form

Ss�p� = �0�pp −
I

3
� , �10�

where the dipole strength �0 is a constant parameter whose
sign depends on the mechanism for swimming. Head-
actuated swimmers or pullers, such as the micro-alga
Chlamydomonas reinhardtii, result in �0�0, whereas rear-
actuated swimmers or pushers, such as most swimming bac-
teria including Escherichia coli and Bacillus subtilis, result
in �0	0. In addition, it can be shown from dimensional
analysis that �0 is related to the single-particle swimming
speed U0 and particle length l by a relation of the form
�0 /�U0l2=
, where 
 is a dimensionless O�1� parameter
with the same sign as �0.

Note that if the angular diffusivity d results from thermal
fluctuations �Brownian rotations�, an additional Brownian di-
pole also arises and is given by45,46,48

Sb�p� = kT�pp −
I

3
� , �11�

where kT is the thermal energy of the liquid. Note that Sb is
formally identical to Ss �compare Eqs. �10� and �11��, so that
including it simply offsets the value of �0 by kT. For typical

micro-organisms such as bacteria and micro-algae, kT
� 	�0	, so we can neglect Sb compared to Ss in the following
discussion. Note, however, that the Brownian dipole may be
significant in suspensions of artificial micro-swimmers,4–9

whose motions can be significantly affected by thermal
fluctuations.

Before moving on, we also introduce the local concen-
tration field c�x , t� and local particle director field n�x , t�
defined from the distribution function � as

c�x,t� = �
�

��x,p,t�dp , �12�

n�x,t� =
1

c�x,t���

p��x,p,t�dp . �13�

Note that c�x , t�=n and n�x , t�=0 in a uniform and isotropic
suspension for which ��x ,p , t�=n /4�.

B. Nondimensionalization

In the following, we nondimensionalize the equations
using the following characteristic length, velocity, and time
scales: lc= �nl2�−1, uc=U0, and tc= lc /uc= �U0nl2�−1. As noted
by Saintillan and Shelley,30 lc= �V /Vp�l, where Vp=Nl3 is the
effective volume taken up by the N particles in the suspen-
sion. Upon nondimensionalization, the conservation Eq. �1�
remains the same, but � is now normalized as

1

V��
V

dx�
�

dp��x,p,t� = 1, �14�

where the dimensionless cell volume is V�= �L / lc�3= �nl2L�3.
The flux Eqs. �3� and �4� become

ẋ = p + v − D��x�ln �� , �15�

ṗ = �I − pp� · �xv · p − d��p�ln �� �16�

with dimensionless diffusion coefficients given by D�

=Dnl2 /U0 and d�=d /U0nl2. Finally, the dimensionless exter-
nal shear rate is obtained as S�=S /U0nl2, and the disturbance
velocity satisfies the dimensionless Stokes equations in
which the active particle stress tensor becomes

�p�x,t� = 
�
�

��x,p,t��pp −
I

3
�dp + C��

�

��x,p,t�

��pp:A���pp −
I

3
�dp �17�

with 
=�0 /�U0l2, C�=nC /�, and A�=S�ŷx̂. For a slender
body, we also obtain C�=�nl3 /6 ln�2 /��. In particular, we
see that C� scales linearly with nl3, which can be viewed as
an effective volume fraction for the suspension,48 and is
much less than 1 in the limit of diluteness.

A few comments on the magnitude of these dimen-
sionless parameters in actual biological systems are in
order. Typical values of the dipole strength, swim-
ming velocity, and particle dimensions for Bacillus subtilis,
which is a bacterium commonly used in experiments, are
given by Pedley:37 �0
−2.7�10−11 g cm2 s−1,

x

φ v(x) = Syx̂

O
y

p

θ

z

FIG. 1. �Color online� Problem geometry and coordinate system.
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U0
2�10−3 cm s−1, l
4 �m, and �
0.2. Based on these
values, and assuming a typical bacterial density of
109 cells cm−3 �corresponding to a dilute volume fraction of
approximately 0.2%�, we obtain the following estimates for

 and C�:


 
 − 0.84, C� 
 0.014. �18�

For the dimensionless shear rates considered in the rest of the
paper �S� of order 1 and less�, we therefore see that active
particle stresses, with magnitude 
, will dominate the dissi-
pative stresses due to the inextensibility of the particles,
which have a typical magnitude of C�S� in Eq. �17�. Based
on this observation, the flow-induced stresses will be ne-
glected in the stability analysis of Sec. III, though they will
be included in the nonlinear simulations of Sec. IV. In
the remainder of the paper, we exclusively use dimension-
less variables, and omit asterisks � �� on all dimensionless
parameters.

III. LINEAR STABILITY ANALYSIS

A. Eigenvalue problem

The stability of an isotropic homogeneous active
suspension was previously investigated in the absence of
an external flow �S=0� by Saintillan and Shelley29,30 and
Hohenegger and Shelley.31 It was found that suspensions of
pushers are subject to a long-wavelength instability below a
given wave number kc, whereas suspensions of pullers are
stable for k
kc. Above kc, both suspensions of pushers
and pullers were found to be stable in the presence of rota-
tional diffusion.31 While the linear instability for pushers was
found not to result in concentration fluctuations, numerical
simulations30 demonstrated that such fluctuations still appear
at long time as a result of nonlinearities. In this section, we
extend these previous studies to consider the effect of a non-
zero external shear flow on the stability �S�0�.

In the base state, we take the distribution function �0�p�
to satisfy the following equation:

�p · �ṗ0�0� − d�p
2�0 = 0, �19�

where ṗ0 is given by

ṗ0 = �I − pp� · A · p . �20�

For a linear shear flow, Eq. �19� must be solved numerically,
for instance using finite differences,54 or surface harmonic
expansions.46,55 Note that in the base state, �0 is uniform in
space and therefore no disturbance flow occurs: u0�x , t�=0,
q0�x , t�=0.

Next, we consider a small perturbation with respect to
the uniform base state

��x,p,t� = �0�p� + ��1�x,p,t� , �21�

where ��1 and 	�1�x ,p , t�	=O�1�. This perturbation in-
duces weak velocity and pressure fields

u�x,t� = �u1�x,t�, q�x,t� = �q1�x,t� . �22�

Substituting Eqs. �21� and �22� into the governing equations
and linearizing in � with respect to the base state, we obtain
the following equation for �1:

��1

�t
+ �p + x · A� · �x�1 − 3�pp:A��1 − 3�pp:�xu1��0

+ ṗ0 · �p�1 + ṗ1 · �p�0 − D�x
2�1 − d�p

2�1 = 0,

�23�

where ṗ0 is given by Eq. �20� and ṗ1= �I−pp� ·�xu1 ·p,
and where we have used the two useful relations: �p · ṗ0

=−3pp :A and �p · ṗ1=−3pp :�xu1, both easily derived from
Jeffery’s equation. To make further analytical progress,
we assume a plane-wave perturbation with wave vector k
for the distribution function. Because the imposed shear flow
will advect and deform this plane wave, we write the distri-

bution function as �1�x ,p , t�=�̃�k ,p�exp�ik · �x−x ·At�
+�t�, where the term involving the velocity gradient A ac-
counts for deformation under shear and ensures that an ini-
tially periodic solution remains periodic as time goes on, and
where � is the complex growth rate which may a priori be a
function of t. By linearity, similar forms can be assumed for
all other perturbation variables. Plugging this form into Eq.
�23� easily yields

�� + k2D + ip · k − 3pp:A��̃ − 3i�p · k��p · ũ��0

+ ṗ0 · �p�̃ + p̃̇ · �p�0 − d�p
2�̃ = 0, �24�

where k= 	k	, and where we have substituted t=0 in order to
focus on the evolution of the plane wave at the initial instant.
In Eq. �24�, the Fourier coefficient of the perturbation veloc-
ity is easily obtained as

ũ�k� =
i

k
�I − k̂k̂� · �̃p · k̂ �25�

with k̂=k /k and

�̃p = 
�
�

�̃�k,p��pp −
I

3
�dp . �26�

In Eq. �26�, we have only included the stress contribution
from the permanent swimming dipoles, based on the obser-
vations of Sec. II B. The corresponding angular velocity in
Eq. �24� is given by

p̃̇ = i�ũ · p��I − pp� · k . �27�

Equation �24�, together with Eqs. �25�–�27�, is an integro-
differential equation, which constitutes an eigenvalue prob-

lem for the eigenfunction �̃�k ,p� with eigenvalue �. We
solve it spectrally by expanding the eigenfunction on the
basis of surface harmonics56

�̃�k,p� = �
l,m

alm�k�Pl
m�cos ��exp im� , �28�

where the angles � and � parameterize the orientation vector
p as �see Fig. 1�

p = �sin � cos �,sin � sin �,cos �� �29�

and where Pl
m�cos �� denotes the associated Legendre poly-

nomial of order �l ,m�. Substituting the expansion �28� into
Eq. �24� yields, after very cumbersome algebra, a large-scale
algebraic eigenvalue problem for the eigenvector of the co-
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efficients alm�k�. This eigenvalue problem can be solved nu-
merically using standard techniques, providing the complex

eigenvalue � and corresponding eigenfunction �̃�k ,p� for a
given wave vector k.

B. Results

Because of the high complexity of the eigenvalue prob-
lem of Eq. �24� for an arbitrary wave vector k, we limit our
attention to the special case of a plane-wave perturbation in
the direction normal to the shear plane: k=kẑ. This has the
advantage of greatly simplifying the eigenvalue problem,
and we will also demonstrate in the numerical simulations of
Sec. IV that the z-direction is in fact the most unstable direc-
tion. The eigenvalue problem can be solved for various
choices of the diffusion coefficients D and d and of the shear
rate S. As discussed by Saintillan and Shelley,30 including
translational diffusion D simply shifts the solution for Re���
by −Dk2, resulting in a more rapid damping of the instabili-
ties at high wave numbers. However, low wave numbers
always remain unstable. On the other hand, the effects of
rotational diffusion can be more subtle. In their recent analy-
sis, Hohenegger and Shelley31 showed that the growth of
perturbations in suspensions of pusher particles is associated
with a proliferation of oscillations in swimmer directions,
and that rotational diffusion can therefore play an important
role in stabilizing the flow at all spatial wavelengths. From a
more practical standpoint, including rotational diffusion in
the eigenvalue problem �24� also has the advantage of regu-
larizing the eigenfunctions, which can otherwise become sin-
gular for some values of k,30,31 thus allowing us to obtain
meaningful solutions using only a finite number of surface
harmonics. We therefore include rotational diffusion in all of
our calculations, and we investigate the effects of both S and
d on the growth rate �.

Figure 2 shows the effect of the external shear rate S on
the real and imaginary parts of �, for a rotational diffusion
coefficient of d=0.01. When there is no imposed flow
�S=0�, both Re��� and Im��� follow trends that are very
similar to the previous results of Saintillan and Shelley29,30

�which were technically obtained in the absence of rotational
diffusion, d=0�: at very low wave numbers, Re����0 and
Im���=0, suggesting that long-wavelength fluctuations will
amplify exponentially at short times. At slightly higher val-
ues of k, Im��� becomes nonzero, indicating the existence of
time oscillations in the dynamics at intermediate wave num-
bers. Above a critical wave number kc
0.45, the growth rate
Re��� becomes negative so that all fluctuations are damped.
In the absence of rotational diffusion, Saintillan and
Shelley30 had obtained a critical wave number kc
0.55.

As an imposed shear flow is applied �S�0�, the solution
to the dispersion relation becomes significantly more com-
plex, with the emergence of unexpected branchings in the
real part of the growth rate. The behavior of Im��� does not
change significantly, although it becomes nonzero even at
low wave numbers. The most noticeable trend is the decrease
of the growth rate Re��� with S, as well as the reduction of
the range of unstable wave numbers. This indicates a stabi-
lizing effect by the external shear flow, and in fact any given

positive wave number k�0 is found to ultimately become
fully stable beyond a sufficiently large shear rate.

The damping effect of the flow should not come as a
surprise. Indeed, it has the effect of controlling particle ori-
entations, as demonstrated in Fig. 3, showing the base state
orientation distribution �0�p� at two different shear rates
�with a fixed rotational diffusivity of d=0.01�. As expected
and in agreement with previous studies,46 the shear flow
aligns particles along the x-axis, with a degree of alignment
that increases with shear rate. Because the instability ana-
lyzed here is related to the local alignment of the particles
via the active stress tensor �p �which can be interpreted as a
local nematic order parameter�,29,30,33 we expect this addi-
tional flow-induced alignment to hinder the growth of stress
fluctuations associated with the instability.

The effects of rotational diffusion are analyzed in Fig. 4,
showing the growth rate Re��� as a function of wave number
k for two different values of d, with and without an external
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FIG. 2. �Color online� Effect of shear rate S on the �a� real part, and �b�
imaginary part of the complex growth rate �, for a rotational diffusion
coefficient of d=0.01. S=0: solid line ——, S=0.1: dashed line ----,
S=0.2: dash-dotted line – ·–, and S=0.3: dash-dot-dotted line – · ·–.
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flow �S=0 and 0.1�. We find that the effects of rotational
diffusion on the growth rate are similar to those of shear:
increasing d results in a damping of the instability as dem-
onstrated by a lower growth rate and a reduction of the range
of unstable wave numbers; additional complex branchings
are also observed to appear in the solution of the dispersion
relation. This stabilization can again be rationalized by the
randomizing effect of diffusion on particle orientations,
which again likely hinders the local alignment of the par-
ticles associated with the instability. This effect is also con-
sistent with the previous theoretical observations of Ho-
henegger and Shelley.31

IV. NUMERICAL SIMULATIONS

A. Simulation method

To complement the predictions from the stability analy-
sis of Sec. III, we now present results from three-
dimensional numerical simulations of the kinetic equations

described in Sec. II. Note that the kinetic model involves five
independent variables in addition to time: three spatial coor-
dinates x, y, and z, and two angles � and � for the param-
eterization of the orientation vector p. This high dimension-
ality renders numerical solutions very expensive, and for this
reason we developed a parallel scalable code, which was
used in all the simulations. Typical grids of 1283 points in
space and 162 points for the orientation angles were used,
corresponding to a total of more than half a billion grid
points.

In order to use periodic boundary conditions for the so-
lution of the flow equations, we employ Rogallo’s method, in
which the computational grid deforms to follow the mean
imposed flow,57,58 see Fig. 5. This method shares similarities
with the classic Lees–Edwards boundary conditions59 com-
monly used in particle simulations. Specifically, if x, y, and z
denote spatial coordinates in a fixed reference frame, we de-
fine a new set of coordinates x�, y�, and z� in the deforming
frame by
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x� = x − Syt, y� = y, z� = z . �30�

In this new coordinate system, a triply periodic field remains
periodic as time progresses, allowing the use of Fourier-
based methods. Specifically, the Stokes Eq. �7� is solved
spectrally using truncated Fourier series expansions60 and the
fast Fourier transform algorithm. Knowing the disturbance
velocity field u, we can then solve the conservation Eq. �1�
for the distribution function � using second-order finite dif-
ferences for the fluxes, and a second-order Adams–Bashforth
time-marching scheme.

As a result of the imposed shear, the computational grid
introduced above becomes skewed as time increases. To al-
low the simulation to progress for a desirable amount of time
without introducing large errors, it is necessary to perform a
remeshing of the grid at regular time intervals.57 The remesh-
ing procedure makes use of the periodicity in the streamwise
direction to move the data from the skewed grid onto a grid
that is skewed in the opposite direction. In order to avoid
data interpolation, this procedure is performed whenever
St=n�n+1� /2 where n is a positive integer: at these times,
grid points from the two skewed grids indeed exactly
overlap.57,58 With this method, the computational grid
exactly matches the original orthogonal mesh whenever
St=2n.

In all simulations, translational and rotational diffusion
are both included to ensure that the solutions remain
bounded over time �typical values of D=d=0.01 were used�.
All simulations shown are for pusher particles with 
=−1, as
suspensions of pullers are known to be stable,29,30 and we use
a domain of linear size L=50 in all cases, which is large
enough to ensure that instabilities occur in the absence of
flow �S=0�. The initial condition is taken to be a uniform
isotropic suspension with a weak perturbation of the form

��x,�,�� =
1

4�
+ �

i

�i cos�ki · x + �i�Pi���Qi��� , �31�

where 	�i	�1 is a random coefficient of small magnitude, �i

is an arbitrary phase, and Pi and Qi are low-order trigono-
metric polynomials in � and � with random coefficients. The
initial random perturbations used in the simulations are
band-limited, and typically only include the ten longest
modes. It was indeed previously verified in two-dimensional

simulations that including higher wave numbers in the initial
distribution does not modify the long-time dynamics.30

B. Flow structures and velocity field characterization

At t=0, the initial distribution of Eq. �31� contains fluc-
tuations at many length scales, and has a mean director field
that is uncorrelated in space. As the simulations start, the
evolution of the distribution function is characterized at short
times by the decay of the imposed high-wave-number fluc-
tuations. As time goes on, structures start to form on the
scale of the computational domain. The magnitude of these
fluctuations grows with time, and eventually reaches a statis-
tical steady state as a result of a balance between the active
input power generated by the particles and diffusive pro-
cesses. At this stage, the structures in the flow are found to
form, break up, and reorganize in a repeated and quasiperi-
odic fashion. These dynamics are qualitatively similar to
those previously described by Saintillan and Shelley29,30 in
their two-dimensional simulations. Next, we characterize
density fluctuations and fluid flow structures with emphasis
on the effects of the external flow.

1. Density fluctuations

Figure 6 and accompanying online movie show the iso-
surfaces of the concentration field for different imposed
shear rates S. When there is no shear flow �S=0, Fig. 6�a��,
the concentration field is characterized by the formation of
dense sheetlike structures, which form and break up in
time but do not exhibit any preferred direction. These struc-
tures are the three-dimensional analogs of the concentration
bands that were previously reported in two-dimensional
simulations.29,30 When a weak shear flow is imposed
�S=0.1, Fig. 6�b��, the magnitude of the density fluctuations
is observed to decay slightly, but three-dimensional struc-
tures are still observed to form. These structures are now
affected by the external flow and are seen to align roughly
along a 45° axis with respect to the flow direction, which
corresponds to the axis of maximum extension of the exter-
nal flow. As the shear rate increases further �S=0.14, Fig.
6�c��, a transition is found to occur, in which the concentra-
tion field becomes uniform in the flow direction
�x-direction�. Density fluctuations, however, can still be ob-
served in the plane normal to the flow direction �y-z plane�,
and exhibit two-dimensional patterns that are qualitatively
reminiscent of those observed in the previous two-
dimensional simulations of Saintillan and Shelley.29,30 In
three dimensions, the particles therefore organize into tube-
like structures that are perfectly aligned with the flow direc-
tion �Fig. 6�c��. As the external flow becomes stronger
�S=0.2, Fig. 6�d��, another transition is observed, by which
the density field becomes uniform in both the x- and
y-directions, with fluctuations only in the z-direction �direc-
tion perpendicular to the shear plane�. In this case, the result-
ing concentration sheets �Fig. 6�d�� do not merge and break
up, but instead travel past each other in the y-direction.
Closer inspection indeed shows that the velocity field in this
case consists of jets of fluid flowing up or down in the
y-direction, with no velocity component in the z-direction

O x̂

ŷ

ẑ

SLyt

y = y′

x′ = x− Syt

x

skewed

computational

domain

FIG. 5. Schematic illustrating the deformation of the computational domain
with the mean imposed shear flow, after Rogallo �Ref. 57�.
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�see Fig. 7�d��. Finally, as the shear rate increases yet further
�S�0.3�, fluctuations in the z-direction are suppressed as
well, resulting in a complete stabilization of the suspension,
which becomes perfectly homogeneous in space. The ob-
served transitions from three- to two- to one-dimensional
dynamics as shear rate increases suggest that the rate of
damping of the instabilities by the external flow is in fact
direction-dependent: the z-direction, which the stability
analysis of Sec. III B focused on, is seen to be the most
unstable direction, followed by the y- and eventually
x-directions.

2. Velocity fields

Associated with the density fluctuations described above
are complex flow fields, which are illustrated in Fig. 7, show-
ing sample disturbance velocity fields in the two-dimensional
y-z plane. At low shear rates �S=0 and 0.1, Figs. 7�a� and
7�b��, the flow fields are three-dimensional and chaotic, and
characterized by complex flow patterns involving vortices
and jets, in agreement with previous experimental
observations.13,14 These flow fields are also qualitatively
similar to those previously obtained in two-dimensional con-
tinuum simulations,29,30 and three-dimensional particle
simulations.22,23,27 Note that the flow fields, while chaotic
and random, are very smooth and dominated by motions on
the scale of the simulation box; this will be further discussed

FIG. 6. �Color online� Concentration field isosurfaces for different shear rates: �a� S=0 at c=1.5, �b� S=0.1 at c=1.2, �c� S=0.14 at c=1.1, and �d� S=0.2 at
c=1 �enhanced online�. �URL: http://dx.doi.org/10.1063/1.3529411.1�
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FIG. 7. Sample disturbance velocity fields in the y-z plane for different
shear rates: �a� S=0 �no imposed shear flow�, �b� S=0.1, �c� S=0.14, and �d�
S=0.2.
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below. As shear rate increases and the transition from three-
to two-dimensional pattern formation takes place, the distur-
bance flow fields also become two-dimensional and exhibit
fluid jets separated by shear layers and vortices �S=0.14, Fig.
7�c��. Eventually, the disturbance field becomes fully unidi-
rectional �S=0.2, Fig. 7�d�� and is characterized by shear
layers that contain the dense particle sheets previously ob-
served in the concentration field in Fig. 6�d�.

While the observed flow fields are chaotic and reminis-
cent of high-Reynolds-number turbulence �and we will in-
deed show below that both types of flows share similarities�,
they also differ significantly owing to the strong predomi-
nance of large scales in the present simulations, e.g., see Fig.
7�a�. This can be further quantified by considering the kinetic
energy spectrum, which is shown in Fig. 8. At low shear
rates �i.e., before the transition to two-dimensional pattern
formation�, the energy spectrum Ek is found to decay with
wave number k as k−9. This very rapid decay can be com-
pared to k−5/3 for the kinetic energy spectrum in three-
dimensional turbulence, and clearly demonstrates that the
flows in suspensions of swimming micro-organisms are very
smooth and strongly dominated by large scales. This be-
comes yet more striking after the transition to two-
dimensional instabilities, when a power-law decay of k−20 is
obtained �which can be compared to k−3 for two-dimensional
turbulence�. For a given instability regime, we find that the
decay exponent does not depend on system size �although
the magnitude of the spectrum does�. Note that the exponent
of �9 found here in the three-dimensional case differs from
the exponent of �3.5 recently obtained by Saintillan and
Shelley61 using direct particle simulations: this discrepancy
may be attributed to the presence of small-scale flows scaling
on the size of the swimmers in the particle simulations,
which are neglected in the present mean-field theory where
only macroscale flows occurring at long wavelengths with
respect to the swimmer dimensions are modeled.

3. Vortical structures

To further analyze the nature of the flow fields that arise
in the suspensions, we proceed to describe the vortical struc-
tures in the flows. To this end, we make use of the
Q-criterion of Hunt et al.,62 which is based on the character-
ization of the local flow topology in terms of critical points.63

Specifically, given a flow field u�x , t�, the local nature of the
flow at a given time and point in space can be characterized
by the eigenvalues of the velocity gradient A=�u=E+W,
where E and W are the rate-of-strain and rate-of-rotation
tensors, respectively. These eigenvalues satisfy the character-
istic equation

�3 + P�2 + Q� + R = 0, �32�

where P, Q, and R are the invariants of the velocity gradient
tensor. In the case of an incompressible flow, they are ex-
pressed as

P = − Eii = 0, �33�

Q = − �EijEji + WijWji�/2, �34�

R = − �EijEjkEki + 3WijWjkWki�/3. �35�

Because P=0 owing to incompressibility, we see that the
local geometry of the flow is fully characterized by the sec-
ond and third invariants. Noting that the definition �34� of the
second invariant may also be written as

Q = ��W�2 − �E�2�/2, �36�

where �W�2=WijWij and �E�2=EijEij, we see that Q quanti-
fies the local balance between shear strain and vorticity mag-
nitude. Points in space with Q�0 can therefore be regarded
as dominated by vorticity, whereas those with Q	0 are
dominated by strain.62,64

Q-isosurfaces therefore provide a simple way of identi-
fying vortical structures in the flow. These isosurfaces are
shown in Fig. 9 for different shear rates. In good qualitative
agreement with the observations made on Fig. 6, the vortical
structures appear to be random and isotropic in the absence
of shear flow �S=0, Fig. 9�a��, but become aligned with the
axis of maximum extension of the external flow at interme-
diate shear rates �S=0.1, Fig. 9�b��. Beyond the transition to
two-dimensional instabilities, the vortical structures take the
form of vortex tubes that are perfectly aligned in the flow
direction and cause fluid rotation in the plane perpendicular
to the flow �S=0.14, Fig. 9�c��; these vortex tubes are found
to coincide approximately with the position of the denser
regions in the suspensions �compare Figs. 6�c� and 9�c��.
After the transition to one-dimensional instabilities, no vor-
tical structures are present in the flow �not shown�.

4. Q-R plots

More detailed information about the flows is also pro-
vided by the joint probability distribution of the second and
third invariants Q and R. In the Q-R plane, the nature of the
eigenvalues of the velocity gradient tensor can be determined
by the value of the discriminant
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FIG. 8. �Color online� Kinetic energy spectrum for different shear rates:
from top to bottom, S=0, S=0.05, S=0.1, and S=0.14.
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D = �27/4�R2 + Q3 �37�

which defines the transition between straining and rotational
flows. Specifically, a positive discriminant D�0 corresponds
to one real and two complex conjugate eigenvalues, i.e., a
rotational flow, whereas negative values of D correspond to
three distinct real eigenvalues, i.e., a flow with no rotation.
The curve D=0 corresponds to the case of three real eigen-
values in which two are equal �uniaxial compressional or
extensional flow�. The sign of the third invariant R provides
information on the stability of the flow: if R	0, the real part

of two of the eigenvalues is negative, corresponding to a
stable critical point, whereas R�0 indicates a positive real
part for two of the eigenvalues and corresponds to an un-
stable critical point.65

Figure 10 shows two Q-R plots obtained from our simu-
lations in the absence of shear �S=0� and with a weak shear
flow �S=0.1�. When there is no imposed flow �S=0, Fig.
10�a��, the diagram shows a shape similar to a tear drop
along the second and fourth quadrants, which is repeatedly
observed in turbulent flows and is often considered a univer-
sal characteristic of small scale turbulent motions.65–68 Note,
however, that the Q and R distributions in Fig. 10 are
strongly concentrated near the origin, which indicates that
the flows are strongly dominated by large-scale motions, un-
like turbulent flows where small-scale motions also play an
essential role. This observation is consistent with the previ-
ous discussion on the decay of the kinetic energy spectrum
�Fig. 8�. As a shear flow is imposed �S=0.1, Fig. 10�b��, the

FIG. 9. �Color online� Vortical structures, identified by isosurfaces of
the second invariant Q of the velocity gradient tensor �Eq. �36��, for
different imposed shear rates: �a� S=0 at Q=0.015, �b� S=0.1 at
Q=0.0075, and �c� S=0.14 at Q=0.001 �enhanced online�. �URL:
http://dx.doi.org/10.1063/1.3529411.2�
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shape of the Q-R plot remains essentially the same, but
small-scale flows are further suppressed as shown by the
more compact range of the Q and R distributions. In both
cases, the Q-R plots show a slight tendency toward the sec-
ond and fourth quadrants �owing to the tear-drop shape�,
which correspond to stable focus/stretching and unstable
node/saddle/saddle flow topologies, respectively.63 This ten-
dency is slightly less pronounced when a flow is applied
�S=0.1�.

C. Joint probability distribution functions

To investigate the spatial orientation and alignment of
the density and flow structures, we present results on the
joint probability distribution functions �JPDFs� of various
flow quantities in the �� ,�� plane, where the angles � and
� are defined in Fig. 1. In particular, the angle pairs
�� ,��= �� /2,0� and �� /2,�� correspond to the direction of
the imposed flow. Note that in order to eliminate the natural
bias of the distributions toward the equator in spherical co-
ordinates, we present the JPDFs in terms of cos � and �
instead of � and �, in which case �cos � ,��= �0,0� and
�0,�� correspond to the flow direction. All the JPDFs shown
below are averaged over space and time after a statistical
steady state has been reached in the simulations.

Figure 11 shows the JPDFs of the concentration gradient
vector �c, which provides information about the orientation
of the density patterns. When no shear flow is applied
�S=0, Fig. 11�a��, the probability distribution function is al-
most uniform �note the small range of the color map�, with
small fluctuations which can be attributed to noise and to the
cubic geometry of the simulation domain. This confirms that
the density patterns have no preferred direction when no flow
is applied, as previously noted on Fig. 6�a�. For low
shear rates �S=0.1, Fig. 11�b��, the distribution becomes
strongly anisotropic, with concentration gradients aligned
preferentially along directions slightly above �=3� /4 and
�+3� /4, and symmetric with respect to the shear plane
�=� /2. This is consistent with density patterns roughly
aligned with the �=� /4 and �+� /4 directions, in agree-
ment with the shape of the isosurfaces in Fig. 6�b�. After the
instabilities becomes two-dimensional �S=0.14, Fig. 11�c��,
the concentration gradients display two peaks at �=� /2 and
3� /2, corresponding to a density field that is uniform in the
flow direction ��=0,�� as seen in Fig. 6�c�. Also note that
the gradient distribution is biased toward �=0 and � �i.e., the
z-axis�, and this trend becomes clearer above the transition to
the one-dimensional instability case �S=0.2, not shown�,
where all the gradients occur in the direction perpendicular
to the shear plane �see Fig. 6�d��. As the shear rate increases
from 0 to 0.2, the characteristic magnitude of the concentra-
tion gradients is seen to increase �see color bars in Fig. 11�,
which indicates that the density patterns become increasingly
sharp in stronger flows.

The JPDFs for the vorticity vector are shown in Fig. 12.
As for the concentration gradient, the distribution is nearly
isotropic when no shear flow is applied �S=0, Fig. 12�a��. In
a weak shear flow �S=0.1, Fig. 12�b��, the vorticity is found
to align with the flow direction ���0 and �, �=� /2�, and

the peaks in the distribution correlate with the valleys in the
JPDF of the concentration gradient �Fig. 11�b��. This remains
the case in the two-dimensional instability case �S=0.14, Fig.
12�b��, where the vorticity is found to be almost perfectly
aligned with the flow direction. This suggests that vorticity
tends to align with the density patterns; this is particularly
clear in the two-dimensional instability case where vortex
tubes in the flow direction directly correlate with the dense
regions in the flow �for instance, compare Figs. 6�c�, 7�c�,
and 9�c��.
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FIG. 11. �Color online� JPDF of the concentration gradient vector �c for
different shear rates: �a� S=0 �no imposed flow�, �b� S=0.1, and �c�
S=0.14.
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Finally, the orientation of the particles is characterized in
Fig. 13, showing the JPDF of the mean director field n�x , t�
defined in Eq. �13�. As expected, particles are oriented iso-
tropically on average when there is no shear flow, and the
effect of the flow is to align the particles in the flow direction
���0 and �, �=� /2�, with a degree of alignment that be-
comes stronger as the shear rate increases. This effect is not
surprising, and is consistent with the base-state orientation
distributions obtained in Sec. III B �Fig. 3�, and with previ-
ous observations made in the absence of hydrodynamic
interactions.46 Comparing this figure with Figs. 11 and 12, a

simple picture of the flow is starting to emerge: on average,
particles tend to be aligned with and swim in the direction of
the flow, which also roughly corresponds to the direction of
vortex tubes and of density patterns. This description is how-
ever simplistic as these orientation statistics are spatially and
temporally averaged.

D. Alignment with rate-of-strain eigenvectors

To gain a more thorough understanding of the flow, we
also consider the local alignment of the density and flow
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FIG. 12. �Color online� JPDF of the vorticity field for different shear rates:
�a� S=0 �no imposed flow�, �b� S=0.1, and �c� S=0.14.
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FIG. 13. �Color online� JPDF of the mean director field n for different shear
rates: �a� S=0 �no imposed flow�, �b� S=0.1, and �c� S=0.14.
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structures with respect to the eigenvectors of the disturbance
rate-of-strain tensor. We index these eigenvectors by their
corresponding eigenvalues 
, �, and �, with 
���� and

+�+�=0 owing to incompressibility �see Sec. IV F and
Fig. 22 for a discussion of these eigenvalues�.

Figure 14 shows probability distribution functions of the
cosine of the angle between the directions of the concentra-
tion gradient �c and of the various eigenvectors of the dis-
turbance rate-of-strain tensor. Both plots for S=0 and
S=0.1 look qualitatively similar, and show a strong align-
ment of the concentration gradient with the third eigenvector
with eigenvalue �
0, which corresponds to the local axis of
compression of the flow. This suggests that compression by
the disturbance flow contributes to the growth of concentra-
tion fluctuations in the suspension by advecting particles to-
ward the regions of high density. This correlation between
the density gradient and the direction of compression has
previously been noted in other unrelated studies involving
the dynamics of passive scalar fields in turbulent flows.68,69

A similar probability distribution function is shown in
Fig. 15 for the angle between the vorticity direction and vari-
ous rate-of-strain eigenvectors. In this case, alignment with
the intermediate eigenvector �with eigenvalue �� is observed
for both S=0 and S=0.1. While this alignment is very good
in the absence of flow �S=0, Fig. 15�a��, it is less strong
when the shear flow is applied �S=0.1, Fig. 15�b��, where a
peak at cos �
0.8 is observed and suggests an angle of

approximately 3� /16 between the vorticity and second ei-
genvector. This alignment of vorticity with the second strain-
rate eigenvector is also commonly observed in simulations of
turbulent flows, where it is often considered a universal fea-
ture of the flow.68,69

Finally, the alignment of the mean director field n with
the rate-of-strain eigenvectors is considered in Fig. 16. The
director field is observed to be strongly aligned in the direc-
tion of the eigenvector with largest eigenvalue 
�0, which
is also the axis of maximum extension of the disturbance
flow. It is also found to align normally with respect to the
axis of compression. These effects were to be expected and
are a simple consequence of Jeffery’s Eq. �4� for the orien-
tational dynamics of the particles, which tend to align par-
ticles along the axis of extension in strain-dominated flows.45

The data of Figs. 14–16 suggest the following picture for
the flow: density patterns �sheets or tubes� tend to align with
the axis of maximum extension of the disturbance flow �cor-
responding to eigenvalue 
�, which is the combined result of
compression by the flow in the direction of the �-eigenvector
and stretching in the direction of the 
-eigenvector. In addi-
tion, the particles also tend to align with the axis of maxi-
mum extension as a direct consequence of Jeffery’s Eq. �4�,
so that they preferably swim along the axis of the density
patterns. The vorticity, however, appears to be aligned with
the intermediate eigenvector, which, we speculate, might
play a role in the destabilization and eventual breakup of the
density structures as observed in the dynamics �Fig. 6 and
accompanying online movie�.

E. Autocorrelation functions

Information about the characteristic size and orientation
of the structures can also be obtained from the autocorrela-
tion functions of various flow variables. Figure 17 shows the
time-averaged autocorrelation function of the concentration
field in the shear plane �x-y plane� for different values of the
shear rate S, defined as

Ccc��x,�y� = 
c�x + �x,y + �y,z,t�c�x,y,z,t�� , �38�

where 
 · � denotes a spatial and time-average �after statistical
steady state has been reached�. When there is no external
flow �S=0, Fig. 17�a��, the autocorrelation function is isotro-
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pic as expected, as the density patterns have no preferred
direction �Fig. 6�a��. The concentration field exhibits a rela-
tively large correlation length of the order of a quarter of the
simulation box size. When a weak shear flow is applied
�S=0.1, Fig. 17�b��, the flow aligns and stretches the struc-
tures along its axis of maximum extension ��=� /4�, and
correspondingly the concentration field exhibits an aniso-
tropic autocorrelation function, with a longer correlation
length along the direction of alignment. After the transition

to two-dimensional instabilities �S=0.14, Fig. 17�c��, density
fluctuations in the flow direction are suppressed, and the con-
centration field therefore does not decorrelate in the
x-direction. Along the y-direction, it exhibits a long correla-
tion length of the order of half of the domain size.

Qualitatively similar observations can be made on the
disturbance velocity field and particle director field, whose
autocorrelation functions we define as

Cuu��x,�y� =

u�x + �x,y + �y,z,t� · u�x,y,z,t��


	u�x,y,z,t�	2�
, �39�

Cnn��x,�y� =

n�x + �x,y + �y,z,t� · n�x,y,z,t��


	n�x,y,z,t�	2�
. �40�

In the case of the velocity field �Fig. 18�, the correlation
lengths are found to be greater than for the concentration
field, and are of the order of the domain size in the absence
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FIG. 17. �Color online� Time-averaged autocorrelation function Ccc��x ,�y�
of the concentration field in the shear plane �x-y plane� for different shear
rates: �a� S=0 �no shear flow�, �b� S=0.1, and �c� S=0.14.
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FIG. 18. �Color online� Time-averaged autocorrelation function Cuu��x ,�y�
of the disturbance velocity field in the shear plane �x-y plane� for different
shear rates: �a� S=0 �no shear flow� and �b� S=0.1.
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of flow �S=0, Fig. 18�a��, in agreement with our previous
observations of Sec. IV B 2. At S=0.1 �Fig. 18�b��, the dis-
turbance velocity field is found to decorrelate more rapidly
along the flow direction than in the perpendicular directions,
although the alignment with the external flow is not as clear
as for the concentration field. Figure 19 shows similar data
for the particle director field, which is found to follow the
exact same trends as the concentration field in Fig. 17, al-
though with slightly larger correlation lengths of the order of
half of the domain size.

F. Time dynamics

We finish by presenting a few results on the time dynam-
ics in the suspensions. We first consider the active power
input generated by the swimming particles in the flow, which
is defined as30,45

P�t� = − 
�
V
�

�

�pp:E���x,p,t�dpdx . �41�

Figure 20 shows the time evolution of P�t� in the simulations
for various imposed shear rates. In the absence of shear flow
�S=0�, P�t� starts from a low value corresponding to the
random initial configuration of Eq. �31�, and quickly in-
creases with time to reach a statistical steady state at a com-
paratively high value of 0.04. It then fluctuates around this
value owing to the unsteadiness of the dynamics. This in-
crease followed by a plateau is consistent with the observa-
tions of Saintillan and Shelley30 in two dimensions, and was
expected as the power injected by the swimming particles
into the fluid is what drives the instabilities and disturbance
flows in the suspensions. As the shear rate increases slightly
�S=0.1�, the evolution of P�t� remains qualitatively similar,
although the value of the plateau is slightly lower than in the
absence of shear, which is consistent with a stabilizing effect
by the imposed flow. Above the transition to two-
dimensional instabilities �S=0.14�, the dynamics change
drastically: the power input reaches a much lower plateau,
and only fluctuates weakly as demonstrated by the weak and
slow oscillations observed at long times. The value of P�t� is
further reduced after the transition to one-dimensional insta-
bilities �S=0.2�, and P�t� quickly decays to zero at higher
shear rates when the suspensions are completely stabilized
�S=0.3�.

A very interesting consequence of the instabilities and
disturbance flows analyzed here is that they result in an en-
hancement of the effective swimming speed of the micro-
organisms in the case of pushers. This observation was pre-
viously made in particle simulations27 as well as two-
dimensional kinetic simulations,29,30 and is consistent with
experimental observations on dense bacterial suspensions
where velocities greatly exceeding the single swimmer speed
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FIG. 19. �Color online� Time-averaged autocorrelation function Cnn��x ,�y�
of the particle director field in the shear plane �x-y plane� for different shear
rates: �a� S=0 �no shear flow� and �b� S=0.1.
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have been reported.13,14 To quantify the influence of the ex-
ternal flow on this effect, we consider in Fig. 21 the contrac-
tion of the local disturbance velocity u�x , t� with the director
field n�x , t�, which we define after Saintillan and Shelley30 as


u · n��t� =
1

V
�

V

c�x,t�u�x,t� · n�x,t�dx . �42�

The time evolution in the absence of shear flow �S=0� is
consistent with the two-dimensional simulations of Saintillan
and Shelley,30 and exhibits an increase of 
u ·n� from zero to
a positive plateau of approximately 0.20 as the instabilities
start to develop. This suggests again that the particles tend to
align locally with the disturbance flow, a direct consequence
of Jeffery’s Eq. �4�, and that this local alignment is polar and
in the direction of the disturbance velocity. This indeed cor-
responds to an effective enhancement of the mean particle
swimming speed as a result of mean-field hydrodynamic in-
teractions via the disturbance flow. This alignment is less
pronounced when a shear flow is applied, as demonstrated by
lower plateaus reached by 
u ·n� as S increases. Finally,

u ·n�=0 in the fully stable case �S=0.3�, i.e., no enhance-
ment occurs. These observations all confirm that the insta-
bilities that arise in suspensions of pushers play a critical role
in the enhancement of particle velocities reported in
experiments.13

Finally, Fig. 22 presents data on the eigenvalues of the
disturbance rate-of-strain tensor, whose role we analyzed ear-
lier in Sec. IV D. For all flow rates, we find that the first and
third eigenvalues 
 and �, which are respectively, positive
and negative, have similar magnitudes. The intermediate ei-
genvalue � is of very small magnitude at low shear rates and
fluctuates around zero, although with a small positive mean;
it becomes exactly zero above the transition to two-
dimensional instabilities. As the instabilities take place, the
magnitudes of 
 and � both increase to reach plateau values.

The effect of the shear flow, as expected, is to decrease these
steady-state values as a result of the damping of the insta-
bilities. When the flow is fully stabilized by the imposed
shear �S=0.3�, all three eigenvalues quickly decay to zero.

V. SUMMARY

We have presented a theoretical and computational study
of the effects of an externally imposed simple shear flow on
the dynamics in dilute suspensions of swimming micro-
organisms. The study was based on the previous kinetic
model proposed by Saintillan and Shelley,29,30 which repre-
sents a suspension of self-propelled particles by means of a
probability distribution function for the particle positions and
orientations, which evolve as a result of single particle swim-
ming, translational and angular diffusions, and translation
and rotation under the local flow field. This flow field is
decomposed as the sum of the imposed shear flow and of the
disturbance flow induced by the individual force dipoles ex-
erted by the particles on the fluid as they swim.

Using this kinetic model, we first performed a linear
stability analysis, which demonstrates that the main effect of
the shear flow is to stabilize the instabilities that occur when
no flow is applied. We confirmed this prediction by perform-
ing large-scale three-dimensional simulations of the kinetic
equations using an efficient parallel spectral code and Rogal-
lo’s classic method57 to account for the external flow. These
simulations indeed demonstrated the stabilizing effect of the
shear flow. Furthermore, we found that this stabilization is
direction-dependent and occurs first in the flow direction,
followed by the gradient direction, and eventually by the
direction perpendicular to the shear plane, as demonstrated
by transitions from three- to two- to one-dimensional insta-
bilities, followed by an eventual stabilization of the flow as
the imposed shear rate increases. In addition, these nonlinear
simulations were also used to characterize the density pat-
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terns and complex flow fields that arise in the suspensions at
long time. These flows were found to be strongly chaotic and
reminiscent of high-Reynolds-number turbulence. While
some specific characteristics of the flows were found to be
similar to turbulence, and in particular the shape of Q-R plots
and the alignment of the vorticity vector with the intermedi-
ate strain-rate eigenvector, other features differed signifi-
cantly, notably the very strong predominance of large scales
in the present simulations.

As discussed in Sec. I, one application of the present
study lies in the effective rheology of suspensions of self-
propelled particles. Previous theoretical models42–47 have
analyzed the rheology of very dilute suspensions by com-
pletely neglecting the effects of particle-particle interactions
�even in the mean-field sense�. These studies have found that
suspensions of self-propelled particles should exhibit de-
creased viscosities in the case of pushers, but increased vis-
cosities for pullers, in qualitative agreement with
experiments.41,70 These conclusions assumed homogeneous
suspensions with steady orientation distributions: the present
work suggests that at low shear rates the instabilities that
occur as a result of interactions will modify, at least quanti-
tatively, the results of these previous dilute theories. The pre-
cise effects of these instabilities on the rheology remain to be
analyzed and will be the subject of future work.
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