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The transport of self-propelled particles such as bacteria and phoretic swimmers
through crowded heterogeneous environments is relevant to many natural and engineering
processes, from biofilm formation and contamination processes to transport in soils and
biomedical devices. While there has been experimental progress, a theoretical understand-
ing of mean transport properties in these systems has been lacking. In this work, we
apply generalized Taylor dispersion theory to analyze the long-time statistics of an active
self-propelled Brownian particle transported under an applied flow through the interstices
of a periodic lattice that serves as an idealization of a porous medium. Our theoretical
model, which we validate against Brownian dynamics simulations, is applied to unravel
the roles of motility, fluid flow, and lattice geometry on asymptotic mean velocity and
dispersivity. In weak flows, transport is dominated by active dispersion, which results
from self-propulsion in the presence of noise and is hindered by the obstacles that act as
entropic barriers. In strong flows, shear-induced Taylor dispersion becomes the dominant
mechanism for spreading, with pillars now acting as regions of shear production that
enhance dispersion. The interplay of these two effects leads to complex and unexpected
trends, such as a nonmonotonic dependence of axial dispersivity on flow strength and a
reduction in dispersion due to swimming activity in strong flows. Brownian dynamics are
used to cast light on the preasymptotic regime, where tailed distributions are observed in
agreement with recent experiments on motile microorganisms. Our results also highlight
the subtle effects of pillar shape, which can be used to control the magnitude of dispersion
and to drive a net particle migration in quiescent systems.
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I. INTRODUCTION

The transport of active self-propelled particles through complex microstructured media has
important implications in microbial ecology as well as human health. Examples include the
spreading of contaminants in soils and groundwater aquifers, bacterial filtering, biodegradation and
bioremediation processes, and the transport of motile cells inside the body. Engineering applications
such as medical diagnostics and biochemical analysis also often hinge on the manipulation and
control of active particle motions through complex geometries [1].

While the effective transport of passive tracers in porous media flows has been analyzed in great
detail in the past, the case of active particles that self-propel remains largely unexplored. In free
space, a microswimmer with constant speed v0 undergoing translational and rotational diffusion
with diffusivities dt and dr performs a spatial random walk with long-time dispersivity D = dt +
v2

0/2ndr in n dimensions [2]. The dispersion enhancement due to swimming, henceforth termed
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active dispersion, is the combined effect of rotational diffusion (which allows the particle to sample
all swimming directions) and advective transport by swimming, resulting in a correlated random
walk in space. In a porous matrix and in the absence of flow, this active dispersion should intuitively
be reduced, as indeed seen in experiments on Chlamydomonas reinhardtii in pillar arrays [3]. This
reduction is due in part to geometric obstruction, with the pillars acting as entropic barriers [4], but
also to the natural tendency of microswimmers to accumulate at boundaries [5–7]. Trapping near
obstacles is indeed seen in experiments [8,9] where it is also thought to be enhanced by swimmer-
wall hydrodynamic interactions [10].

When an external flow is applied, the coupling of particle orientations with the fluid shear further
complicates transport. First, diffusion and swimming across streamlines alter long-time spreading
by the classic phenomenon of shear-induced dispersion. This dispersion mechanism, first analyzed
by Taylor [11] and Aris [12] in the context of passive tracers in pressure-driven pipe flow, results
from the random sampling of fluid velocities by the particles as they stochastically travel across
velocity gradients, causing them to disperse in the streamwise direction. Second, the rotation of
particles in the strong shear near boundaries is expected to result in their alignment against the
flow [9,13], possibly leading to a net reduction in mean transport by an effect similar to upstream
swimming in pressure-driven flows [5,14]. Recent experiments on Escherichia coli in random post
arrays seem to support this hypothesis [9]. The situation is yet more complex in the presence of
asymmetric obstacles, where the gliding of microswimmers along curved boundaries can drive a
net migration even in quiescent conditions [15–18].

Some of these trends have been confirmed in experiments [3,9,19–21] as well as various
computational models [22–25], yet a first-principles theory for predicting the statistics of active
transport in even simple porous matrices remains lacking. Transport and dispersion of active
particles has previously been analyzed in simpler settings such as in unbounded linear flows [26–28]
as well as in straight [29,30] and corrugated [16,31] channels. Several of these studies have been
based on generalized Taylor dispersion theory (GTDT), a theoretical method first developed by
Brenner and coworkers [32–34] to describe shear-induced dispersion. More fundamentally, GTDT
(also known as macrotransport theory [34]) provides a general framework for calculcating the long-
time statistics of particle configurations under the coupled effects of advective transport (e.g., fluid
flow, swimming, sedimentation, chemotaxis) and diffusive transport (e.g., translational or rotational
diffusion, run-and-tumble dynamics). Both active and shear-induced dispersion as well as upstream
swimming fall within the purview of GTDT, which provides a convenient tool for the theoretical
analysis of these effects and of their interplay in porous media flows of self-propelled particles.

In this work, we present a theoretical model based on GTDT for the transport and effective
spreading of microswimmers in two-dimensional periodic lattices. The theory extends previous
studies on transport of passive point tracers in porous media [35,36] to the case of orientable
particles [37] that can also swim along their unit director. We adopt in Sec. II a very simple
physical model of an active Brownian particle that self-propels, is transported and rotated by an
applied flow, and diffuses in both space and orientation. To highlight the universal features of active
transport, we retain only these key ingredients, as they are common to most types of self-propelled
particles from motile microorganisms to phoretic swimmers. In particular, we neglect higher-order
swimmer-specific effects such as hydrodynamic interactions, which may become significant in some
experimental realizations. We also focus on two-dimensional geometries, which are more tractable
and also very relevant to describe quasi-two-dimensional benchmark experiments [3,9]. Starting
from the Fokker-Planck equation for the configuration of a single particle in a periodic lattice in
Sec. III, we apply Brenner’s method of moments [32,35] to derive theoretical expressions for the
asymptotic transport velocity and dispersivity dyadic,

U = lim
t→∞

d

dt
〈R(t )〉, D = lim

t→∞
1

2

d

dt
〈[(R(t ) − 〈R(t )〉][R(t ) − 〈R(t )〉]〉, (1)

where R(t ) is the instantaneous swimmer position and 〈·〉 denotes the ensemble average. Results
from our theory are tested against Brownian dynamics simulations in Sec. IV, where we unravel
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(a)
(b)

FIG. 1. (a) Geometry of a representative lattice, unit cell and associated nomenclature. A typical unit cell
for a square lattice is shown on the right. (b) Noncircular obstacle shapes are generated by an area-preserving
conformal mapping [38], where parameters Y and Z control obstacle aspect ratio and fore-aft asymmetry,
respectively (see Appendix A).

the roles of particle motility, fluid flow, and lattice geometry on long-time transport properties. We
summarize our findings and conclude in Sec. V.

II. PROBLEM DEFINITION AND LANGEVIN DESCRIPTION

We analyze the long-time asymptotic transport of a dilute collection of self-propelled active
particles of circular shape dispersed in a viscous solvent and moving through the interstices of a
doubly periodic two-dimensional porous material. The porous medium is modeled as an infinite
lattice comprised of rigid obstacles of characteristic dimension a and generated through the discrete
translation of a geometric unit cell of linear dimensions Lx × Ly (Fig. 1). Each cell in the lattice is
labeled by two integers (α, β ) ∈ Z2, which identify its position Rαβ = (Xα,Yβ ) = (αLx, βLy ) with
respect to origin O, chosen as the centroid of an arbitrary cell. The array is characterized by its
aspect ratio δ = Ly/Lx and by its porosity εp = S f /St , or ratio of the interstitial fluid area S f of a
cell over its total area St . While the focus of the paper is on square lattices of circular pillars as
shown in Fig. 1(a), we also present a few results on the effects of lattice arrangement and pillar
shape in Sec. IV D. The pillar shapes we consider in those examples are illustrated in Fig. 1(b) and
are obtained by conformal mapping of the unit circle [38]. The mapping we employ preserves pillar
area and involves two parameters {Y,Z} that control pillar aspect ratio and fore-aft asymmetry,
respectively (see Appendix A for details).

In a dilute system, we can neglect interparticle interactions and need consider only the transport
of a single swimmer. Its instantaneous configuration is described by its position R(t ) with respect
to point O and by its swimming direction p = (cos θ, sin θ ) in the plane of motion, with polar angle
θ (t ) ∈ � ≡ [0, 2π ). The global coordinate R can be decomposed as R = Rαβ + r, where Rαβ is the
position of the unit cell where the particle is located and r = (x, y) is a local coordinate with respect
to the center of that cell. The particle is released at t = 0 at position R0 = r0 with orientation p0.

We use the simple model of an active Brownian particle, in which particle motion results from
self-propulsion, advection and rotation by the fluid flow, and translational and rotational diffusion.
Particle dynamics are described by two coupled Langevin equations:

Ṙ = v0p + u(r) + ηt (t ), (2)

ṗ = 1
2�(r) × p + (I − pp) · ηr (t ), (3)
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where ηt and ηr are Gaussian random vectors with zero mean that satisfy the fluctuation-dissipation
theorem [39]: 〈ηt (t )ηt (t

′)〉 = √
2dt I δ(t − t ′) and 〈ηr (t )ηr (t ′)〉 = √

2dr (I − pp) δ(t − t ′), respec-
tively. The velocity field u(r) is a two-dimensional Stokes flow driven by a macroscopic pressure
gradient applied across the array, with uniform speed u∞ and incoming angle 	 f upstream of the
array; we solve for it numerically by the boundary integral method (see Appendix B for details).
The fluid vorticity �(r) = ∇r × u (where ∇r ≡ ∂/∂r) also causes rotation of the particle in Eq. (3),
which assumes a circular shape [40]. Our aim is to describe the long-time statistics of the particle
position R(t ), which we model within the continuum framework of generalized Taylor dispersion
theory and validate against Brownian dynamics simulations.

III. CONTINUUM MODEL

A. Fokker-Planck description

We introduce the conditional probability density ψ (R, p, t |R0, p0) of finding the particle at a
position R with orientation p at time t , given that it was initially released at (R0, p0). It satisfies the
Fokker-Planck equation [41,42]

∂ψ

∂t
+ ∇R · J + ∇p · j = δ(R − R0)δ(p − p0)δ(t ), (4)

where the initial condition is incorporated by the source term on the right-hand side, and where we
have assumed ψ = 0 for t < 0. Here ∇R ≡ ∂/∂R and ∇p ≡ (I − pp) · ∂/∂p denote the gradient
operators with respect to space and orientation, respectively. We henceforth use dimensionless
equations where we scale variables using length scale a, timescale d−1

r , and velocity scale adr , and
we also normalize ψ by 1/a2. In addition to δ and εp introduced in Sec. II, nondimensionalization
of the governing equations yields three dimensionless groups [5]:

Pes = v0

adr
, Pe f = u∞

adr
, κ =

√
dt

a2dr
. (5)

The swimming Péclet number Pes is the ratio of the characteristic timescale for a particle to lose
memory of its orientation due to rotational diffusion over the time it takes it to swim across the
characteristic size of an obstacle. The flow Péclet number Pe f = u∞/adr compares the characteristic
diffusive time to the timescale of alignment under the imposed shear and serves as a measure of
flow strength. Finally, κ is a fixed constant relating the translational and rotational diffusivities of
the particle. The dimensionless spatial and orientational probability fluxes are easily inferred from
the Langevin equations (2) and (3) as

J = [Pesp + Pe f u(r)]ψ − κ2∇Rψ, (6)

j = 1
2 Pe f [�(r) × p]ψ − (I − pp) · ∇pψ. (7)

In a given cell (α, β), Eq. (4) can be recast solely in terms of local variables as

∂ψ

∂t
+ ∇r · J + ∇p · j = δα0δβ0δ(r − r0)δ(p − p0)δ(t ), (8)

where ψ ≡ ψ (Rαβ, r, p, t |r0, p0), and ∇r ≡ (∂/∂r)Rαβ
is the local gradient operator defined over

the unit cell identified by {α, β}. The probability density function ψ is normalized in such a way
that the sum of the probabilities over all possible configurations is unity after the swimmer is set
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free:
∞∑

α,β=−∞

∫
Sαβ

∫
�

ψ dp d2r =
{

1 for t � 0,

0 for t < 0.
(9)

Convergence of the previous infinite sum requires that

ψ (Rαβ, r, p, t |r0, p0) → 0 as α, β → ±∞. (10)

Boundary conditions for ψ need to be specified on the obstacle boundaries as well as cell edges.
The no-flux condition at the obstacle walls reads

nw · J = 0 on ∂Cw, (11)

where nw is the outward unit vector normal to the wall. Continuity across the cell edges requires

ψ (Rαβ, r, p, t ) = ψ (Rα+1β, r − Lxex, p, t ) on r ∈ ∂Cα+β, (12)

ψ (Rαβ, r, p, t ) = ψ (Rαβ+1, r − Lyey, p, t ) on r ∈ ∂Cαβ+ , (13)

where we omit arguments r0 and p0 for brevity. Likewise, continuity of the particle translational
flux across the cell edges implies

∇rψ (Rαβ, r, p, t ) = ∇rψ (Rα+1β, r − Lxex, p, t ) on r ∈ ∂Cα+β, (14)

∇rψ (Rαβ, r, p, t ) = ∇rψ (Rαβ+1, r − Lyey, p, t ) on r ∈ ∂Cαβ+ . (15)

These continuity relations will be useful in the following discussion when deriving boundary
conditions for the probability moments.

B. Macrotransport model

The Fokker-Planck description forms the basis for the calculation of the asymptotic mean
transport velocity U and dispersivity dyadic D as we now proceed to explain. The method described
here is an extension of Brenner’s generalized Taylor dispersion theory [35] to the case of polar active
particles with a unit director p undergoing rotational diffusion.

1. Local moments

Following generalized Taylor dispersion theory [35], we seek the mean asymptotic transport
properties in terms of the kth-order polyadic local moments of ψ defined as

ψk (r, p, t |r0, p0) =
∞∑

α,β=−∞
Rαβ · · · Rαβ︸ ︷︷ ︸

k times

ψ. (16)

Taking moments of the Fokker-Planck equation (8) provides conservation equations for the ψk:

∂ψk

∂t
+ ∇r · Jk + ∇p · jk = δk0δ(r − r0)δ(p − p0)δ(t ), (17)

where Jk and jk are the local moments of the translational and orientational fluxes, respectively, and
are simply given by

Jk = [Pesp + Pe f u(r)]ψk − κ2∇rψk, (18)

jk = 1
2 Pe f [�(r) × p]ψk − ∇pψk. (19)
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The preinitial condition on ψ implies that ψk = 0 for t < 0. Eq. (11) results in a no-flux condition
for the local moments at the obstacle walls: nw · Jk = 0 on ∂Cw. As we will show later, knowledge
of the first three local moments (k = 0, 1, 2) is sufficient to determine the asymptotic transport
velocity and dispersion dyadic.

The continuity conditions obtained in Eqs. (12) and (13) can be used to derive boundary
conditions for the moments. Upon taking the local moments of Eqs. (12) and (13) and applying
translational invariance of Eq. (16) with respect to indices (α, β ), we obtain

ψ0(r, p, t ) = ψ0(r − Lxex, p, t ) on r ∈ ∂Cα+β, (20)

ψ0(r, p, t ) = ψ0(r − Lyey, p, t ) on r ∈ ∂Cαβ+ . (21)

For the first local moment we find

ψ1(r) − ψ1(r − Lxex ) = (r − Lxex )ψ0(r − Lxex ) − rψ0(r) on r ∈ ∂Cα+β, (22)

ψ1(r) − ψ1(r − Lyey) = (r − Lyey)ψ0(r − Lyey) − rψ0(r) on r ∈ ∂Cαβ+ , (23)

and similarly for the second moment,

ψ2(r) − ψ2(r − Lxex ) = ψ1(r)ψ1(r)

ψ0(r)
− ψ1(r − Lxex )ψ1(r − Lxex )

ψ0(r − Lxex )
on r ∈ ∂Cα+β, (24)

ψ2(r) − ψ2(r − Lyey) = ψ1(r)ψ1(r)

ψ0(r)
− ψ1(r − Lyey)ψ1(r − Lyey)

ψ0(r − Lyey)
on r ∈ ∂Cαβ+ , (25)

where we have omitted the dependence on p and t for brevity. To further simplify the notations, we
define the jump [[f]] of a variable f (r, p, t ) as

[[f]] =
{

f (r, p, t ) − f (r − Lxex, p, t ) for r ∈ ∂Cr,

f (r, p, t ) − f (r − Lyey, p, t ) for r ∈ ∂Ct ,
(26)

where ∂Cr and ∂Ct are defined in Fig. 1(a). With this notation, the boundary conditions of Eqs. (20)–
(25) take on the simple form

[[ψ0]] = 0, (27)

[[ψ1]] = −[[rψ0]], (28)

[[ψ2]] = [[ψ1ψ1/ψ0]]. (29)

Following a similar procedure, we can use Eqs. (14) and (15) to derive boundary conditions for the
fluxes, which read

[[∇rψ0]] = 0, (30)

[[∇rψ1]] = −[[∇r (rψ0)]], (31)

[[∇rψ2]] = [[∇r (ψ1ψ1/ψ0)]]. (32)

These conditions are identical to those obtained by Brenner [35] for passive Brownian particles. In
the following sections we will take the asymptotic limits of the local moments. With that in mind, it
will be useful to rewrite the first-order jump conditions (28) and (31) in the form

[[ψ1]] = −ψ0 [[r]], [[∇rψ1]] = −∇rψ0 [[r]], (33)

where we have used the zeroth-order conditions (27) and (30).
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2. Global moments

We now proceed to define the kth-order dyadic global moment Mk as the spatial and orientational
average of the corresponding local moment ψk:

Mk (t |r0, p0) =
∫

St

∫
�

ψk (r, p, t |r0, p0) dp d2r, k = 0, 1, 2 . . . . (34)

This definition is analogous to that of Brenner [35], with the main difference that p serves as
an additional local variable for orientable particles [37]. The zeroth-order global moment derives
immediately from the normalization condition of Eq. (9):

M0 =
{

1 for t � 0,

0 for t < 0.
(35)

A differential equation for Mk (t ) can be obtained by taking the temporal derivative of Eq. (34) and
combining it with Eq. (17):

dMk

dt
=

∫
St

∫
�

[−∇r · Jk − ∇p · jk + δk0δ(r − r0)δ(p − p0)δ(t )]dp d2r. (36)

The integral of the orientational flux divergence vanishes. Applying the divergence theorem then
gives

dMk

dt
= −

∫
�

∮
∂C

Jk · n d dp + δk0δ(t ), (37)

where we have used the no-flux condition on the surface of the obstacles. In Eq. (37) the closed
curve integral with line element d represents the sum of the integrals over all the unit cell edges
shown in Fig. 1(a): ∮

∂C
=

∫
∂Cr

+
∫

∂Ct

+
∫

∂Cl

+
∫

∂Cb

. (38)

By making use of the jump operator defined in Eq. (26), Eq. (37) is conveniently rewritten as

dMk

dt
= −

∫
�

∫
∂Cr+∂Ct

[[Jk]] · n d dp + δk0δ(t ). (39)

3. Asymptotic analysis at long times

Over time, the active particle is transported across the array and samples many lattice cells. In the
long-time asymptotic limit, we seek to describe its statistics in terms of its mean transport velocity
U and mean dispersivity dyadic D. As we now explain, these two quantities are easily obtained in
terms of the probability moments introduced previously.

a. Mean velocity. To determine the mean velocity U, we resort to a Lagrangian description and
calculate the ensemble-averaged swimmer displacement at time t as

〈�R(t )〉 = 〈R(t ) − R(0)〉 =
∞∑

α,β=−∞

∫
Sαβ

∫
�

Rαβ ψ (Rαβ, r, p, t |r0, p0) dp d2r. (40)

From the definition of global moments it is easy to recognize that the right-hand side in Eq. (40) is
nothing but M1. Therefore the asymptotic velocity can be expressed as

U = lim
t→∞

d

dt
〈�R(t )〉 = lim

t→∞
dM1

dt
= − lim

t→∞

∫
�

∫
∂Cr+∂Ct

[[J1]] · n d dp, (41)
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where the last relation results from Eq. (39). Using Eq. (33) and the definition of the moment flux
in Eq. (18), it is straightforward to show that [[J1]] = −J0[[r]], and therefore

U =
∫

�

∫
∂Cr+∂Ct

[[r]]J∞
0 · n d dp, (42)

where J∞
0 (r, p) ≡ limt→∞ J0(r, p, t ), with an asymptotic approach that can be shown to be

exponential in time [35]. The mean asymptotic velocity thus solely depends on the steady-state
zeroth-order local moment ψ∞

0 (r, p), which describes the long-time probability of finding the
particle at local position r with orientation p irrespective of which unit cell it is traversing. It satisfies
the simplified steady Fokker-Planck equation:

∇r · J∞
0 + ∇p · j∞0 = 0, (43)

with fluxes

J∞
0 = [Pesp + Pe f u(r)]ψ∞

0 − κ2∇rψ
∞
0 , (44)

j∞0 = 1
2 Pe f [�(r) × p]ψ∞

0 − (I − pp) · ∇pψ
∞
0 , (45)

subject to normalization condition
∫

S

∫
�

ψ∞
0 dp d2r = 1, to the no-flux condition nw · J∞

0 = 0 on
the surface of the pillar, and to jump conditions [[ψ∞

0 ]] = 0 and [[∇rψ
∞
0 ]] = 0 on the unit cell edges

∂Cr and ∂Ct . In the results shown in Sec. IV, we solve for ψ∞
0 numerically using a finite-volume

method. Once ψ∞
0 has been obtained, we calculate U by simple quadrature according to Eq. (42),

where the long-time translational flux is given in Eq. (44).
b. Mean dispersivity. To determine the dispersivity tensor D, we now consider the ensemble-

averaged mean-square displacement of a swimmer:

〈[�R(t ) − 〈�R(t )〉]2〉 =
∞∑

α,β=−∞

∫
Sαβ

∫
�

[Rαβ − 〈�R(t )〉]2ψ (Rαβ, r, p, t |r0, p0) dp d2r. (46)

Expanding the right-hand side and using the definition of the global moments yields

〈[�R(t ) − 〈�R(t )〉]2〉 = M2(t ) + 〈�R(t )〉2M0 − M1(t )〈�R(t )〉 − 〈�R(t )〉M1(t )

= M2(t ) − M1(t )M1(t ), (47)

where we have used 〈R(t )〉 = M1(t ) and M0 = 1. The asymptotic dispersivity tensor can then be
obtained as

D = lim
t→∞

1

2

d

dt
〈[�R(t ) − 〈�R(t )〉]2〉 = lim

t→∞
1

2

d

dt
(M2 − M1M1). (48)

To make further progress, we first note that integrating Eq. (41) with respect to time gives

M1(t ) = Ut + B + O(e−t ), (49)

where B is an unknown constant vector. Let us recall the definition of M1(t ):

M1(t ) =
∫

St

∫
�

ψ1(r, p, t ) dp d2r. (50)

Comparison of Eqs. (49) and (50) suggests seeking the asymptotic solution for ψ1 in the form

ψ1(r, p, t ) = ψ∞
0 (r, p)[Ut + B(r, p)] + O(e−t ), (51)

where B(r, p) is a vector field to be determined such that

B =
∫

St

∫
�

ψ∞
0 B(r, p) dp d2r. (52)
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The O(e−t ) term in Eqs. (49) and (51) is a consequence of the exponential convergence of the
zeroth-order local moment with time [35]. Using Eq. (50), we can rewrite Eq. (48) as

D = lim
t→∞

1

2

dM2

dt
− U Ut − 1

2
(U B + B U). (53)

The first term on the right-hand side is estimated using the evolution equation (39) for the global
moments:

lim
t→∞

dM2

dt
= − lim

t→∞

∫
�

∫
∂Cr+∂Ct

[[J2]] · n d dp. (54)

The jump in J2 can be obtained by combining Eq. (18) with the boundary conditions (29)–(32)
along with Eq. (51), yielding

lim
t→∞[[J2]] = −J∞

0 (U[[r]]t + [[r]]Ut − [[BB]]) − κ2ψ∞
0 [[∇r (BB)]]. (55)

Upon inserting Eqs. (55) and (54) into Eq. (53), we obtain a new expression for the dispersivity,

D = 1

2

∫
�

∫
∂Cr+∂Ct

[
κ2ψ∞

0 [[∇r (BB)]] − J∞
0 [[BB]]

] · n d dp − 1

2
(U B + B U), (56)

which depends on the known zeroth-order moment ψ∞
0 as well as on the yet unknown fluctuation

field B(r, p). An equation for B can be obtained by plugging Eq. (51) into the governing equation
for ψ1 and making use of the jump conditions. The mathematical manipulations are similar to those
of Brenner [35] and yield the equation

−∇r · [
J∞

0 B − κ2ψ0∇rB
] − ∇p · [

j∞0 B − ψ0∇pB
] = ψ∞

0 U, (57)

subject to boundary conditions [[B]] = −[[r]] and [[∇rB]] = 0 on ∂Cr, ∂Ct , and nw · ∇rB = 0 on
∂Cw. This problem can also be solved numerically using finite volumes, from which one then obtains
D using Eq. (56).

4. Summary of the macrotransport model

We take a moment to summarize and highlight the main steps of the macrotransport model
presented above, which extends that of Brenner [35] to the case of active particles and relies on
the hierarchical structure of the governing equations for the probability moments. As we showed
in Eqs. (41) and (48), the asymptotic transport velocity U depends on the first global moment M1,
while the dispersion dyadic D requires knowledge of the second global moment M2; higher-order
moments of the Lagrangian particle displacement would similarly involve global moments of higher
orders, e.g., M3. Interestingly, we also saw that the asymptotic form of the first global moment can
be obtained with knowledge of the zeroth-order local moment ψ0, while the second global moment
can be solved for using the first-order local moment ψ1. This hierarchy of equations is the basis
for the method of moments [35,36], and we borrow a cartoon from Brenner [34] to illustrate this
inter-relation in Fig. 2.

In order to solve for the mean dispersivity, we need knowledge of the fluctuation field B(r, p),
which obeys advection-diffusion equation (57) as we derived in the previous section. It should
be apparent from the boundary conditions that the problem does not have a unique solution and
that B can be determined only up to an arbitrary constant. This has to do with the fact that the
absolute value of B does not affect the dispersion tensor, which instead depends on its spatial and
orientational gradients. In this sense, B is often interpreted as a “dispersion potential” [35] whose
gradients drive the spreading of a cloud of particles. When solving for it numerically using finite
volumes, we make the problem solvable by setting an arbitrary gauge condition on the mean value
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FIG. 2. Hierarchical structure for determining the local and global moments of the conditional probability
density function ψ (R, p, t |R0, p0). The first and second global moments contain information about asymptotic
transport velocity and dispersivity and can be solved for with knowledge of the zeroth and first local moments.
Cartoon inspired by Ref. [34].

of the field: ∫
St

∫
�

B(r, p) dp d2r = 0, (58)

and this choice does not affect the result for D.

IV. RESULTS AND DISCUSSION

We now present theoretical results and compare them to discrete Brownian dynamics (BD) sim-
ulations based on the Langevin equations (2) and (3); see Appendix C for details of the algorithm.
We first discuss the phenomenology of spreading and convergence to the asymptotic regime, then
analyze the effects of geometric and dynamic parameters on long-time microswimmer transport.

A. Darcy-scale transport and dispersion of a cloud

The macrotransport model predicts that, on long length and timescales, a dilute cloud of active
particles will be transported with mean velocity U and will spread with dispersivity D as provided
by Eqs. (42) and (48). This suggests seeking a coarse-grained Eulerian interpretation of U and D
at the Darcy scale, where the fluid and solid obstacles that comprise the porous material become
indistinguishable, and distances shorter than the characteristic size of the unit cell are irrelevant. To
this end, following Brenner [35] we introduce the discrete conditional probability density as

�(Rαβ, t |r0, p0) = 1

St

∫
�

∫
Sαβ

ψ (Rαβ, r, p, t |r0, p0) d2r dp, (59)

which represents the probability for a particle to be located in the cell labeled by the integers (α, β)
at time t , and whose value is assigned to the centroid of the unit cell. On large length scales, we can
assimilate Rαβ to a continuous variable X and define a corresponding macroscale gradient operator
∇X . The Darcy-scale probability density �(X, t ), the continuous counterpart of ψ (Rαβ, t |r0, p0), is
then expected to formally satisfy a two-dimensional obstacle-free advection-diffusion equation:

∂�

∂t
+ ∇X · (U� − D · ∇X �) = δ(X − X0)δ(t ). (60)

While a rigorous derivation of Eq. (60) is nontrivial, it can easily be verified that its solution
has the same global moments as ψ . For an arbitrary incoming flow, the dispersion tensor is
nondiagonal but can be expressed as D = D1e1e1 + D2e2e2 where (D1, D2) are its eigenvalues with
corresponding eigenvectors (e1, e2). With these notations, the solution of Eq. (60) for the spreading
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FIG. 3. Transport and spreading of a cloud of active particles around circular pillars in Brownian dynamics
simulations at two different times (left two columns) compared to the Darcy-scale theoretical prediction of
Eq. (61) (third column). The two rows correspond to incoming flow angles 	 f = π/3 and 0. See Supplemental
Material [43] for movies showing the temporal evolution. Parameter values: εp = 0.804, Pes = 1, κ2 = 0.1,
and Pe f = 5.

of a concentrated point source can be written as

�(X, t ) = 1

4πt
√

D1D2
exp

[
− (X1 − U 1t )2

4D1t
− (X2 − U 2t )2

4D2t

]
, (61)

where (X1, X2) and (U 1,U 2) are the components of X and U in the basis of the eigenvectors.
Equation (61) simply states that the particle cloud will spread as a translating anisotropic Gaussian.

Results from BD simulations for the spreading of a concentrated point source of active
swimmers are compared to the analytical solution of Eq. (61) in Fig. 3 for two flow directions
	 f (also see movies in the Supplemental Material [43]). On short timescales, the cloud develops
a complex shape that is continually distorted by the pillars and exhibits wakes, boundary layers,
and other features typical of advective-diffusive transport around obstacles. At later times, the cloud
shape becomes increasingly smooth and is very well captured by the theoretical prediction. This
comparison asserts the strength of the Darcy-scale interpretation for describing asymptotic transport
but also highlights key differences.

Figure 4(a) shows the probability density function along the X direction for the case 	 f = 0 and
provides a more quantitative comparison between Brownian dynamics and the analytical solution. In
particular, BD simulations exhibit tailed distributions at preasymptotic times, which we characterize
by studying the evolution of the skewness in Fig. 4(b). A recent experimental study using E. coli in
unstructured pillar arrays has reported positively skewed particle distributions [9]. Our simulations
show more complex trends. In strong flows (large Pe f ), we find that the distributions are always
negatively skewed in the direction of the flow with more particles accumulating downstream.
However, for fast swimming (large Pes) or weak flow (small Pe f ) the distributions are found to
be positively skewed. This competition between swimming and flow and its role in transport is
elaborated in more detail in the following sections. We observe that as time progresses the skewness
tends toward zero as the distribution converges towards a Gaussian cloud. This convergence is
further highlighted by the time evolution of the variance of particle positions in Fig. 4(c), which
rapidly reaches the asymptotic diffusive regime of linear growth.

B. Asymptotic particle distributions at the pore scale

Asymptotic transport characteristics can be attributed in part to pore-scale features of the fluid
flow and of the steady-state zeroth-order moment ψ∞

0 , both of which are illustrated in Fig. 5. We
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FIG. 4. (a) Probability density function �(X, t ) of the macroscale horizontal position X for the two
instantaneous times shown in Fig. 3 for 	 f = 0, where analytical predictions are compared to BD simulation
results. (b) Evolution of the skewness of particle distributions over time as calculated from Brownian dynamics
simulations for two different Pe f . (c) Time evolution of the variances σ 2

xx and σ 2
yy of particle positions, showing

convergence to the asymptotic diffusive regime. In all panels, εp = 0.804, Pes = 1, κ2 = 0.1, and for panels
(a) and (c) Pe f = 5.

define the density and unnormalized polarization of the particle distribution as the zeroth- and first-
order orientational moments of ψ∞

0 :

ρ∞
0 (r) =

∫
�

ψ∞
0 (r, p) dp, m∞

0 (r) =
∫

�

p ψ∞
0 (r, p) dp. (62)

In the absence of flow, the interplay of self-propulsion and translational diffusion near obstacle
boundaries creates a net swimmer polarization against the obstacles [5–7], which vanishes at the
cell edges by symmetry. This polarization is accompanied by a net increase in density, which
is azimuthally symmetric near a circular obstacle and enhanced in regions of high curvature for
noncircular pillars [44]. When a flow is applied, the fore-aft symmetry is broken and particles now
preferentially accumulate near stagnation points of the flow, with a maximum density reached in the
rear of circular obstacles. This downstream accumulation, which is observed in experiments [45] and
is akin to that occurring past funnel constrictions [13], results from the combination of advection
by the flow and of shear-rotation and swimming in the fast-flowing high-shear regions above and
below the pillars. Advection and rotation also induce a density minimum a short distance upstream
of the obstacle, which coincides with a stagnation point in the polarization field. As discussed in
the following sections, all these features play a central role in determining the effective spreading
behavior.
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FIG. 5. Asymptotic solutions on the pore scale for two pillar shapes: streamlines and magnitude of the
imposed flow u(r) (left), density field ρ∞

0 (r) (middle), and polarization field m∞
0 (r) (right) as defined in

Eq. (62). In all panels, εp = 0.804, Pes = 1, κ2 = 0.1, and Pe f = 5.

C. Effects of background flow and swimming activity

The long-time relative velocity U x − ux is plotted as a function of flow strength Pe f for different
values of Pes in Fig. 6(a) for a square lattice of circular pillars. Here U is the mean transport velocity
of the microswimmers, and u is the volume-averaged fluid velocity, which is also the mean velocity
that a uniformly distributed passive tracer would experience. In weak flows, active particles are
found to be transported more slowly than the fluid (U x − ux < 0), and this tendency is especially
true of fast swimmers (large Pes), suggesting that a combination of wall accumulation and upstream
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FIG. 6. Mean transport in an imposed flow: (a) Long-time relative mean velocity U x − ux , where U is the
swimmer mean velocity and u is the volume-averaged fluid velocity, as a function of Pe f for different activity
levels. (b) Fraction of time τ up during which particles are moving upstream. Results are in a square lattice with
parameter values: κ2 = 0.1, 	 f = 0, εp = 0.804. Symbols: BD simulations; lines: analytical model.

043101-13



ROBERTO ALONSO-MATILLA et al.

0.0

0.5

1.0

1.5

2.0

D
x
x

0.0 0.5 1.0 1.5 2.0

Pef

(a)

0.0

0.5

1.0

1.5

2.0

D
y
y

0.0 0.5 1.0 1.5 2.0

Pef

Pes = 0.5
Pes = 1
Pes = 1.5
Pes = 2

(b)

102

103

10 102

2.1

1.7

FIG. 7. Dispersion in an imposed flow: (a)–(b) Dependence of Dxx and Dyy on flow Péclet number Pe f for
various values of Pes in a lattice with circular pillars for an external flow in the x direction (	 f = 0). Inset
in panel (a) highlights strong-flow scalings. Parameter values: Pes = 1, κ2 = 0.1, εp = 0.804. Symbols: BD
simulations; lines: analytical model.

swimming are responsible for the effect [5]. In stronger flows, however, U x increases again and in
fact slightly exceeds ux at high values of Pe f . To explain these trends, we consider in Fig. 6(b) the
fraction of time τ up spent by the particles moving upstream (�x · ex < 0). It is directly obtained
from the macrotransport theory as

τ up =
∫

St

∫
�

ψ∞
0

(
r, p | J∞

0 · ex < 0
)
dp d2r. (63)

For a purely diffusive process in the absence of any flow, the particles are equally likely to go
upstream or downstream and therefore τ up = 0.5. While weak swimmers are washed downstream
for all values of Pe f , fast swimmers are able to overcome the flow and move upstream in weak to
moderate flows. The ability of particles to reorient upstream and swim against the flow hinges on
their rotation under shear in the accumulation layers surrounding pillars; this mechanism is very
similar to that responsible for upstream swimming in pressure-driven channel flows, where similar
trends with respect to Pe f are observed [5]. Our findings are also in good qualitative agreement with
recently reported experimental results for the transport of E. coli under strong flows [9], where a
similar dependence of τup on flow strength was reported.

The subtle interplay of activity and flow can be further appreciated in Fig. 7, showing the
dependence of dispersion coefficients on external flow strength Pe f and swimming activity Pes.
In weak flows, Dxx and Dyy have similar magnitudes and the spreading process is primarily due
to self-propulsion. As a result, faster-swimming particles (high Pes) spread more efficiently by the
process of active dispersion. Quite remarkably, increasing flow strength Pe f first causes a decrease
in spreading. This decrease is unique to self-propelled particles and indeed disappears at low values
of Pes. The imposed flow induces alignment of the swimmers, which prevents them from sampling
all directions freely and thus inhibits spreading by active dispersion. At higher values of Pe f , Dxx

starts increasing again due to shear-induced Taylor dispersion. It displays an asymptotic scaling of
Dxx ∼ Peγ

f with an exponent of γ ≈ 2.1 at intermediate flow strengths and of γ ≈ 1.7 in very strong
flows, which is the classical scaling for the porous dispersion of passive tracers [36]. Intriguingly,
activity is seen to hinder Dxx in strong flows in Fig. 7(a). This stems from the fact that swimming
enhances cross-stream migration, and as a result the active particle samples the imposed velocity
gradient field more rapidly leading to an effective uniformity of the sensed velocity field. For a
passive tracer, this effect is similar to the well-known decrease in Taylor dispersion with increasing
translational diffusivity [11]. Unlike Dxx, the transverse dispersivity Dyy in Fig. 7(b) monotonically
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FIG. 8. (a) Maximum eigenvalue Dmax of the dispersivity dyadic and (b) corresponding direction of
maximum dispersion �max

D as a function of incoming flow angle. Parameter values: Pes = 1, κ2 = 0.1, εp =
0.804.

decays with Pe f as stronger flows cause faster rotations of the swimmers in the local shear and thus
limit their ability to sample the y direction.

Dispersion can be further controlled by varying the incoming flow angle 	 f in Fig. 8. For
arbitrary 	 f , the dispersion tensor D is no longer diagonal and maximum dispersion occurs
along the eigendirection �max

D associated with its maximum eigenvalue Dmax = max(D1, D2). The
magnitude of Dmax is maximum for 	 f = 0, which allows for easy gliding of the swimmers between
rows of pillars while undergoing minimal collisions. Other flow directions result in more severe
obstruction by the pillars and thus display much lower values of Dmax, which reaches its minimum
for 	 f ≈ π/8 at high flow rates. While in strong flows the direction of maximum dispersion is
close to that of the imposed flow, such is not the case in weak flows, where activity in fact allows
for significant spreading in the transverse direction as evidenced by the opposite signs for 	 f and
�max

D .

D. Effect of lattice porosity, geometry, and pillar shape

The effect of lattice porosity is analyzed in Fig. 9 and further underscores the competition of
active versus shear-induced dispersion. In the absence of flow and at low porosity, dispersion is weak
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FIG. 9. Effect of lattice porosity: (a)–(b) Dependence of Dxx and Dyy on εp in the case of circular obstacles
at Pes = 1 and for various flow strengths Pe f . All plots are for 	 f = 0 and κ2 = 0.1.
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FIG. 10. Variation of Dxx and Dyy as a function of Pe f at a fixed porosity εp = 0.804 and fixed Pes = 1 for
square and hexagonal lattice arrangements. For all the cases we have 	 f = 0 and κ2 = 0.1.

as the pillars act as entropic barriers that strongly restrict active transport [4]. Increasing porosity
thus causes a monotonic increase in Dxx and Dyy as geometric obstruction plays a lesser role,
and this dependence was indeed recently observed in experiments on Chlamydomonas reinhardtii
[3]. In strong flows (Pe f = 5), Dxx instead decreases with porosity, as smaller obstacles produce
weaker shear and thus weaker dispersion. At intermediate flow strengths (Pe f = 1), Dxx shows a
nonmonotonic behavior: as porosity is increased, axial dispersion first decreases due to a drop in
shear rate, before increasing again at low obstacle area fractions due to active swimming. Curiously,
the limit of εp → 1 differs from the case of swimmers in free space, as infinitesimal obstacles
still induce fluid shear in an imposed flow while also modifying the swimmer distribution in their
vicinity.

The effect of lattice geometry is considered in Fig. 10, where we compare dispersion in a square
lattice to the case of an hexagonal lattice with the same porosity. It is evident from Fig. 10 that
the hexagonal arrangement does not change any qualitative behavior. We notice that the axial
dispersivity is consistently lower in a hexagonal lattice compared to a square lattice while the
behavior reverses for the transverse direction. A qualitative understanding of this behavior can be
appreciated from the Lagrangian perspective of transport. In a hexagonal lattice, axial transport is
hindered compared to a square lattice as straight paths between rows of obstacles are no longer
available and particle trajectories must curve around between staggered pillars. These curved paths
are accompanied by more frequent collisions with pillars, which also has the effect of enhancing
transverse motion, thus explaining the increase in Dyy.

Pillar aspect ratio and fore-aft asymmetry both also affect transport in nontrivial ways. As shown
in Fig. 11(a), elliptical obstacles aligned with a weak flow cause higher streamwise dispersion than if
aligned perpendicular to it, as the former allow swimmers to glide past while the latter act as entropic
barriers that obstruct transport [4]. These trends reverse at high flow rates, as perpendicular obstacles
induce stronger velocity gradients thereby enhancing shear-induced dispersion. Fore-aft asymmetric
obstacles also lead to complex trends in Fig. 11(b). In the absence of flow, Dxx decreases as the shape
parameter Z deviates from 0 (circle) by the aforementioned entropic obstruction mechanism. When
a flow is applied, fluid shear causes particles to swim along the walls and against the flow, resulting
in an enhancement of particle accumulation around obstacles for Z < 0 and in a reduction for
Z > 0. Consequently, the effects of shear alignment (in weak flows) and shear-induced dispersion
(in strong flows) on transport are magnified for obstacle shapes that promote wall accumulation
(Z < 0), as seen in Fig. 9(d). This asymmetry becomes negligible at very high values of Pe f , as
activity becomes subdominant and the magnitude of the shear gradients that drive dispersion in this
limit is independent of the sign of Z by reversibility of Stokes flow.
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FIG. 11. Effect of obstacle geometry: (a)–(b) Effect of shape aspect ratio parameter Y and fore-aft
asymmetry Z on Dxx at Pes = 4 for different values of Pe f . Inset shows obstacle shapes. All plots are for
	 f = 0 and κ2 = 0.1.

In addition to their effect on dispersion, fore-aft asymmetric pillars can also introduce a net
bias in the mean transport, which is most appreciable in the absence of flow (Pe f = 0) where a
nonzero transport velocity is observed. This is illustrated in Fig. 12, where increasing either Z or
Pes amplifies the effect. This net migration, which results from irreversible collisions between the
active particle and the curved boundary, occurs towards the pointed end of the pillar in agreement
with experiments on catalytic rods in teardrop arrays [17] and a related statistical model [18].

V. CONCLUDING REMARKS

We have analyzed the long-time transport properties of active particles in a porous lattice under
both quiescent and flow conditions. We developed a continuum model based on generalized Taylor
dispersion theory, and started from a single-particle level approach to show that the overall behavior
of a dilute cloud of cells can be described by an obstacle-free advection-diffusion equation, whose
effective long-time mean particle velocity and dispersivity dyadic have been determined through a
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FIG. 12. Mean transport velocity U x in square arrays of fore-aft asymmetric pillars (asymmetry parameter
Z) as a function of swimming strength Pes in the absence of flow (Pe f = 0). Results are from BD simulations
with 	 f = 0 and κ2 = 0.1.
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set of boundary value problems. The predictions of our continuum model, which agree perfectly
with Brownian dynamics simulations at long times, highlight the complex interplay of particle
motility, alignment under shear, cross-stream migration, lattice porosity, and pillar geometry on
asymptotic dispersion, and we have provided a physical explanation for the predicted trends. In
particular, we showed that obstacles behave predominantly as entropic barriers at low flow rates and
as regions of shear production at high flow rates, and found that shear-induced polarization as well
as activity-driven cross-stream migration play an important role on active particle dispersion. Our
theory provides a simple framework for analyzing microorganismal transport in natural structured
environments and for designing engineered porous media in applications involving microswimmers.
The fundamental premise of noninteracting active Brownian particles glosses over many details
that may become relevant in specific systems. For instance, future work should address the roles
of hydrodynamic interactions with obstacles [10], swimmer-specific scattering dynamics [46],
rheological effects due to activity [47], and the potential emergence of spontaneous flows and active
turbulence in denser systems [48,49].
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APPENDIX A: CONFORMAL MAPPING FOR NONCIRCULAR OBSTACLES

In order to explore the effect of pillar shape on active particle transport, we consider a class of
noncircular pillar geometries that are obtained using conformal mappings. Specifically, we make
use of following Riemann map of the unit disk:

z(σ ) = Wσ + Y
σ

+ Z√
2 σ 2

, (A1)

where σ = eiχ with polar angle χ ∈ [0, 2π ). {W,Y,Z} are three parameters that are varied to
change the obstacle shape. An identical conformal map was previously used to study amoeboid
swimming [38]. Avoiding self-intersection of the boundary provides the following constraint on the
shape parameters [38]:

W � Y ±
√

2Z, WY � 2Z2 − W2. (A2)

For a given lattice porosity we also need to constrain the area of these shapes, which can be shown
to be [38]

A = π (W2 − Y2 − Z2). (A3)

Following our nondimensionalization, we choose A to be the area of a circle with unit radius. Given
the value of A, we need vary only parameters {Y,Z}, which control shape aspect ratio and fore-aft
asymmetry, respectively. Typical shapes obtained by this method are illustrated in Figs. 1 and 11.

APPENDIX B: FLOW CALCULATION: BOUNDARY INTEGRAL METHOD

We use the boundary integral method [50] to calculate the fluid velocity. Owing to the periodicity
of the lattice, we can make use of the doubly periodic Green’s function for two-dimensional Stokes
flow, which is computed using standard Ewald summation techniques. The fluid velocity u at any
point inside the unit cell of the lattice is decomposed into the free-stream component u∞ and a
disturbance velocity uD generated due to the presence of the obstacles. In the present problem we
take u∞ to be a uniform streaming flow. On the surface ∂Cw of the obstacles, the no-slip condition
u = 0 is satisfied, or alternately, uD = −u∞. We use a single-layer representation for the velocity
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to obtain

u(x0) = u∞(x0) − 1

4πμ

Np∑
q=0

∫
Cq

G(x, x0) · f (x) d(x), (B1)

where Np is the total number of obstacles within the unit cell, Cq is the contour of the qth obstacle,
G(x, x0) is the computed Green’s function, and f (x) is the local traction. On enforcing the no-slip
boundary condition one is able to solve for the unknown tractions by inverting a dense linear system.
Once the tractions are obtained, the fluid velocity can be calculated at any point using Eq. (B1).
For all the cases presented in the paper we have used linear elements to discretize the contour
of the obstacles and Gauss-Legendre quadrature for evaluating the integrals. Sangani and Acrivos
[51] studied the flow past a periodic array of circular cylinders using the stream-function-vorticity
formulation and provided results for the drag on a cylinder as a function of obstacle volume fraction:
our numerical method was validated against their predictions and excellent agreement was found.

In order to facilitate fast computation, the velocity was pretabulated on a Cartesian mesh
and bilinear interpolation was used subsequently. We used second-order-accurate finite-difference
approximations to compute and tabulate velocity gradients on the mesh. Our interpolation results
were validated against the boundary integral method, and the error was always within 1%.

APPENDIX C: BROWNIAN DYNAMICS ALGORITHM

We performed Brownian dynamics simulations using discrete point swimmers, whose trajecto-
ries follow the Langevin equations (2) and (3). We parametrize the director as p = (cos θ, sin θ ).
During time step �t in a simulation, the changes in position R and orientation θ are calculated as

�R = [Pesp + Pe f u] �t +
√

2κ2�t ζt , (C1)

�θ = Pe f [p⊥ · ∇uT · p] �t +
√

2�t ζr, (C2)

where the equations have been made dimensionless. Here p⊥ = (− sin θ, cos θ ), and ζt and ζr are
Gaussian random variables with zero mean and unit variance. In most simulations we use N =
105 particles. The no-flux boundary condition on the surface of the obstacles is enforced using a
reflecting condition. The algorithm was validated against well-known results for the transport of
passive tracers in porous media [36].
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